
The New C Standard (Introduction)

An Economic and Cultural Commentary

Derek M. Jones
derek@knosof.co.uk

Copyright ©2002-2008 Derek M. Jones. All rights reserved.

CHANGES-5

CHANGES

-5Copyright © 2005, 2008 Derek Jones
The material in the C99 subsections is copyright © ISO. The material in the C90 and C++ sections that is
quoted from the respective language standards is copyright © ISO.
Credits and permissions for quoted material is given where that material appears.
THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE PARTICULAR WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN.

Commentary
The phrase at the time of writing is sometimes used. For this version of the material this time should be taken
to mean no later than December 2008.

29 Jan 2008 1.1 Integrated in changes made by TC3, required C sentence renumbering.
60+ recent references added + associated commentary.
A few Usage figures and tables added.
Page layout improvements. Lots of grammar fixes.

5 Aug 2005 1.0b Many hyperlinks added. pdf searching through page 782 speeded up.
Various typos fixed (over 70% reported by Tom Plum).

16 Jun 2005 1.0a Improvements to character set discussion (thanks to Kent Karlsson), margin
references, C99 footnote number typos, and various other typos fixed.

30 May 2005 1.0 Initial release.

v 1.1 January 30, 2008

Introduction 0

Introduction

0 With the introduction of new devices and extended character sets, new features may be added to this
International Standard. Subclauses in the language and library clauses warn implementors and programmers
of usages which, though valid in themselves, may conflict with future additions.
Certain features are obsolescent, which means that they may be considered for withdrawal in future revisions
of this International Standard. They are retained because of their widespread use, but their use in new
implementations (for implementation features) or new programs (for language [6.11] or library features [7.26])
is discouraged.
This International Standard is divided into four major subdivisions:
— preliminary elements (clauses 1–4);
— the characteristics of environments that translate and execute C programs (clause 5);
— the language syntax, constraints, and semantics (clause 6);
— the library facilities (clause 7).
Examples are provided to illustrate possible forms of the constructions described. Footnotes are provided to
emphasize consequences of the rules described in that subclause or elsewhere in this International Standard.
References are used to refer to other related subclauses. Recommendations are provided to give advice or
guidance to implementors. Annexes provide additional information and summarize the information contained
in this International Standard. A bibliography lists documents that were referred to during the preparation of
the standard.
The language clause (clause 6) is derived from “The C Reference Manual”.
The library clause (clause 7) is based on the 1984 /usr/group Standard.
1. Effort invested in producing the C Standard 7
2. Updates to C90 9
3. Introduction 12
4. Translation environment 14

4.1. Developer expectations .14
4.2. The language specification . 15
4.3. Implementation products . 15
4.4. Translation technology .16

4.4.1. Translator optimizations. .18
5. Execution environment 20

5.1. Host processor characteristics . 21
5.1.1. Overcoming performance bottlenecks . 24

5.2. Runtime library . 27
6. Measuring implementations 27

6.1. SPEC benchmarks . 27
6.2. Other benchmarks .28
6.3. Processor measurements . 29

7. Introduction 29
8. Source code cost drivers 30

8.1. Guideline cost/benefit . 31
8.1.1. What is the cost? . 31
8.1.2. What is the benefit? . 31
8.1.3. Safer software?. .32

8.2. Code development’s place in the universe . 32
8.3. Staffing .33

8.3.1. Training new staff . 34
8.4. Return on investment .34

8.4.1. Some economics background. .35
8.4.1.1. Discounting for time . 35
8.4.1.2. Taking risk into account . 36
8.4.1.3. Net Present Value . 36

January 30, 2008 v 1.1

Introduction0

8.4.1.4. Estimating discount rate and risk .37
8.5. Reusing software . 37
8.6. Using another language . 37
8.7. Testability . 38
8.8. Software metrics . 40

9. Background to these coding guidelines 40
9.1. Culture, knowledge, and behavior .41

9.1.1. Aims and motivation . 44
9.2. Selecting guideline recommendations . 45

9.2.1. Guideline recommendations must be enforceable . 48
9.2.1.1. Uses of adherence to guidelines . 49
9.2.1.2. Deviations . 49

9.2.2. Code reviews . 50
9.3. Relationship among guidelines . 51
9.4. How do guideline recommendations work? . 51
9.5. Developer differences . 52
9.6. What do these guidelines apply to? . 53
9.7. When to enforce the guidelines . 54
9.8. Other coding guidelines documents .55

9.8.1. Those that stand out from the crowd . 56
9.8.1.1. Bell Laboratories and the 5ESS .56
9.8.1.2. MISRA . 57

9.8.2. Ada . 57
9.9. Software inspections . 58

10. Applications 59
10.1. Impact of application domain . 59
10.2. Application economics . 59
10.3. Software architecture .60

10.3.1. Software evolution .60
11. Developers 61

11.1. What do developers do? . 61
11.1.1. Program understanding, not . 62

11.1.1.1. Comprehension as relevance . 64
11.1.2. The act of writing software .65

11.2. Productivity . 65
12. The new(ish) science of people 66

12.1. Brief history of cognitive psychology . 66
12.2. Evolutionary psychology . 67
12.3. Experimental studies . 67

12.3.1. The importance of experiments . 68
12.4. The psychology of programming .68

12.4.1. Student subjects . 68
12.4.2. Other experimental issues . 69

12.5. What question is being answered? . 69
12.5.1. Base rate neglect. .70
12.5.2. The conjunction fallacy . 71
12.5.3. Availability heuristic . 73

13. Categorization 74
13.1. Category formation .76

13.1.1. The Defining-attribute theory . 77
13.1.2. The Prototype theory . 78
13.1.3. The Exemplar-based theory . 78
13.1.4. The Explanation-based theory . 78

13.2. Measuring similarity . 78

v 1.1 January 30, 2008

Introduction 0

13.2.1. Predicting categorization performance . 80
13.3. Cultural background and use of information .83

14. Decision making 84
14.1. Decision-making strategies . 84

14.1.1. The weighted additive rule . 85
14.1.2. The equal weight heuristic . 85
14.1.3. The frequency of good and bad features heuristic . 85
14.1.4. The majority of confirming dimensions heuristic . 86
14.1.5. The satisficing heuristic. .86
14.1.6. The lexicographic heuristic . 86

14.1.6.1. The elimination-by-aspects heuristic . 87
14.1.7. The habitual heuristic. .87

14.2. Selecting a strategy . 88
14.2.1. Task complexity . 88
14.2.2. Response mode. .88
14.2.3. Information display . 89
14.2.4. Agenda effects . 89
14.2.5. Matching and choosing . 90

14.3. The developer as decision maker .90
14.3.1. Cognitive effort vs. accuracy . 91
14.3.2. Which attributes are considered important? . 91
14.3.3. Emotional factors . 92
14.3.4. Overconfidence . 92

14.4. The impact of guideline recommendations on decision making . 94
14.5. Management’s impact on developers’ decision making .94

14.5.1. Effects of incentives . 94
14.5.2. Effects of time pressure . 95
14.5.3. Effects of decision importance . 95
14.5.4. Effects of training . 95
14.5.5. Having to justify decisions . 96

14.6. Another theory about decision making . 96
15. Expertise 97

15.1. Knowledge . 98
15.1.1. Declarative knowledge . 99
15.1.2. Procedural knowledge . 99

15.2. Education . 99
15.2.1. Learned skills . 100
15.2.2. Cultural skills. .100

15.3. Creating experts . 100
15.3.1. Transfer of expertise to different domains . 101

15.4. Expertise as mental set . 101
15.5. Software development expertise . 101
15.6. Software developer expertise . 102

15.6.1. Is software expertise worth acquiring? .104
15.7. Coding style . 104

16. Human characteristics 105
16.1. Physical characteristics . 108
16.2. Mental characteristics . 108

16.2.1. Computational power of the brain. .109
16.2.2. Memory .110

16.2.2.1. Visual manipulation . 115
16.2.2.2. Longer term memories . 115
16.2.2.3. Serial order . 117
16.2.2.4. Forgetting . 117

January 30, 2008 v 1.1

Introduction0

16.2.2.5. Organized knowledge . 119
16.2.2.6. Memory accuracy . 119
16.2.2.7. Errors caused by memory overflow . 120
16.2.2.8. Memory and code comprehension . 120
16.2.2.9. Memory and aging . 121

16.2.3. Attention . 121
16.2.4. Automatization . 122
16.2.5. Cognitive switch. .123
16.2.6. Cognitive effort .124
16.2.7. Human error . 125

16.2.7.1. Skill-based mistakes . 126
16.2.7.2. Rule-based mistakes . 126
16.2.7.3. Knowledge-based mistakes . 126
16.2.7.4. Detecting errors . 127
16.2.7.5. Error rates . 127

16.2.8. Heuristics and biases . 127
16.2.8.1. Reasoning . 128
16.2.8.2. Rationality . 128
16.2.8.3. Risk asymmetry .128
16.2.8.4. Framing effects . 130
16.2.8.5. Context effects . 130
16.2.8.6. Endowment effect . 131
16.2.8.7. Representative heuristic .132
16.2.8.8. Anchoring .134
16.2.8.9. Belief maintenance .134
16.2.8.10. Confirmation bias . 139
16.2.8.11. Age-related reasoning ability . 141

16.3. Personality .141
17. Introduction 142

17.1. Characteristics of the source code . 143
17.2. What source code to measure? . 143
17.3. How were the measurements made? . 144

Commentary
This book is about the latest version of the C Standard, ISO/IEC 9899:1999 plus TC1, TC2 and TC3 (these
contain wording changes derived from WG14’s responses to defect reports). It is structured as a detailed,defect report 0

systematic analysis of that entire language standard (clauses 1–6 in detail; clause 7, the library, is only
covered briefly). A few higher-level themes run through all this detail, these are elaborated on below. This
book is driven by existing developer practices, not ideal developer practices (whatever they might be). How
developers use computer languages is not the only important issue; the writing of translators for them and
the characteristics of the hosts on which they have to be executed are also a big influence on the language
specification.

Every sentence in the C Standard appears in this book (under the section heading C99). Each of these
sentences are followed by a Commentary section, and sections dealing with C90, C++, Other Languages,
Common Implementations, Coding Guidelines, Example, and Usage as appropriate. A discussion of each of
these sections follows.

Discussions about the C language (indeed all computer languages), by developers, are often strongly
influenced by the implementations they happen to use. Other factors include the knowledge, beliefs and
biases (commonly known as folklore, or idiom) acquired during whatever formal education or training
developers have had and the culture of the group that they current work within. In an attempt to simplifyculture of C 0

discussions your author has attempted to separate out these various threads.
Your author has found that a common complaint made about his discussion of C is that it centers on what

4 v 1.1 January 30, 2008

1 Effort invested in producing the C Standard Introduction 0

the standard says, not on how particular groups of developers use the language. No apology is made for this
outlook. There can be no widespread discussion about C until all the different groups of developers start
using consistent terminology, which might as well be that of the standard. While it is true that your author’s
involvement in the C Standards’ process and association with other like-minded people has resulted in a
strong interest in unusual cases that rarely, if ever, occur in practice, he promises to try to limit himself to
situations that occur in practice, or at least only use the more obscure cases when they help to illuminate the
meaning or intent of the C Standard.

No apologies are given for limiting the discussion of language extensions. If you want to learn the details
of specific extensions, read your vendor’s manuals.

Always remember the definitive definition is what the words in the C Standard say. In responding to defect
reports the C committee have at times used the phrase the intent of the Committee. This phrase has been 0 defect report

used when the wording in the standard is open to more than one possible interpretation and where committee
members can recall discussions (via submitted papers, committee minutes, or committee email) in which the
intent was expressed. The Committee has generally resisted suggestions to rewrite existing, unambiguous,
wording to reflect intent (when the wording has been found to specify different behavior than originally
intended).

RationaleAs well as creating a standards document the C committee also produced a rationale. This rationale document
provides background information on the thinking behind decisions made by the Committee.

Wording that appears within a sectioned area like this wording is a direct quote from the rationale (the
document used was WG14/N937, dated 17 March 2001).

No standard is perfect (even formally defined languages contain mistakes and ambiguities[215]). There is a
mechanism for clarifying the wording in ISO standards, defect reports (DRs as they are commonly called). 0 defect report

The text of C99 DRs are called out where applicable.

1 Effort invested in producing the C Standard
The ANSI Committee which produced C90, grew from 13 members at the inaugural meeting, in June 1983,
to around 200 members just prior to publication of the first Standard. During the early years about 20 people
would attend meetings. There was a big increase in numbers once drafts started to be sent out for public
review and meeting attendance increased to 50 to 60 people. Meetings occurred four times a year for six
years and lasted a week (in the early years meetings did not always last a week). People probably had to put,
say, a week’s effort into reading papers and preparing their positions before a meeting. So in round numbers
let’s say:

(20 people × 1.3 weeks × 3 meetings × 1 years) +
(20 people × 1.7 weeks × 4 meetings × 2 years) +
(50 people × 2.0 weeks × 4 meetings × 3 years) ⇒ 1,540 person weeks (not quite 30 years)

What about the 140 people not included in this calculation— how much time did they invest? If they spent
just a week a year keeping up with the major issues, then we have 16 person years of effort. On top of this
we have the language users and implementors reviewing drafts that were made available for public review.
Not all these sent in comments to the Committee, but it is not hard to imagine at least another 4 person years
of effort. This gives the conservative figure of 50 person years of effort to produce C90.

Between the publication of C90 and starting work on the revision of C99, the C committee met twice a
year for three days; meeting attendance tended to vary between 10 and 20. There was also a significant rise
in the use of email during this period. There tended to be less preparation work that needed to be done before
meetings— say 2 person years of effort.

The C99 work was done at the ISO level, with the USA providing most of the active committee membership.
The Committee met twice a year for five years. Membership numbers were lower, at about 20 per meeting.

January 30, 2008 v 1.1 5

Introduction 1 Effort invested in producing the C Standard0

ISO

JTC 1

TC 1
(Screw Threads)

TC 2

TC 4
(Rolling Bearings)

...

TC 243
(Civil Defence)

TC 244

Information
Technology

SC 2

SC 7
(Software and

Systems
Engineering)

...

SC 22

SC 23

...

SC 36
(Learning

Technology)

Programming
Languages

WG 3

WG 4
(COBOL)

WG 5
(FORTRAN)

...

WG 14
(C)

WG 15
(POSIX)

...

WG 21
(C++)

...

Figure 0.1: The ISO Technical Committee structure— JTC (Joint Technical Committee, with the IEC in this case), TC (Technical
Committee), SC (Standards Committee), WG (Working Group).

This gives a figure of 8 person years. During development of C99 there was a significant amount of discussion
on the C Standard’s email list; just a week per year equates to more than 2 person years (the UK and Japanese
national bodies had active working groups, many of whose members did not attend meetings).

Adding these numbers up gives a conservative total of 62 person years of effort that was invested in the
C99 document. This calculation does not include the cost of travelling or any support cost (the document
duplication bill for one committee mailing was approximately $5,000).

The C committee structureISO

The three letters ISO are said to be derived from the Greek isos, meaning “the same” (the official English
term used is International Organization for Standardization, not a permutation of these words that gives the
ordering ISO). Countries pay to be members of ISO (or to be exact, standards organizations in different
countries pay). The size of the payment depends on a country’s gross domestic product (a measure of
economic size) and the number of ISO committees they want to actively participate in. Within each country,
standards’ bodies (there can be more than one) organize themselves in different ways. In many countries it is
possible for their national standards’ body(s) to issue a document as a standard in that country. The initial
standards work on C was carried out by one such national body — ANSI (American National Standards
Institute). The document they published was only a standard in the USA. This document subsequently went
through the process to become an International Standard. As of January 2003, ISO has 138 national standardsX3J11 0

bodies as members, a turnover of 150 million Swiss Francs, and has published 13,736 International Standards
(by 188 technical committees, 550 subcommittees, and 2,937 working groups)(see Figure 0.1).

The documents published by ISO may be formally labeled as having a particular status. These labels
include Standard, Technical Report (Type 1, 2, or 3), and a draft of one of these kinds of documents (there
are also various levels of draft). The documents most commonly seen by the public are Standards and Type
2 Technical Reports. A Type 2 Technical Report (usually referred to as simply a TR) is a document that
is believed to be worth publishing as an ISO Standard, but the material is not yet sufficiently mature to be
published as a standard. It is a kind of standard in waiting.

6 v 1.1 January 30, 2008

2 Updates to C90 Introduction 0

C90
C90 was the first version of the C Standard, known as ISO/IEC 9899:1990(E) (Ritchie[381] gives a history of
prestandard development). It has now been officially superseded by C99. The C90 sections ask the question:
What are the differences, if any, between the C90 Standard and the new C99 Standard?
Text such this occurs (with a bar in the margin) when a change of wording can lead to a developer visible
change in behavior of a program.

Possible differences include:

• C90 said X was black, C99 says X is white.

• C99 has relaxed a requirement specified in C90.

• C99 has tightened a requirement specified in C90.

• C99 contains a construct that was not supported in C90.

If a construct is new in C99 this fact is only pointed out in the first sentence of any paragraph discussing
it. This section is omitted if the wording is identical (word for word, or there are minor word changes that
do not change the semantics) to that given in C99. Sometimes sentences have remained the same but have
changed their location in the document. Such changes have not been highlighted.

The first C Standard was created by the US ANSI Committee X3J11 (since renamed as NCITS J11). This X3J11

document is sometimes called C89 after its year of publication as an ANSI standard (The shell and utilities
portion of POSIX[183] specifies a c89 command, even although this standard references the ISO C Standard,
not the ANSI one.). The published document was known as ANSI X3.159–1989.

This ANSI standard document was submitted, in 1990, to ISO for ratification as an International Standard.
Some minor editorial changes needed to be made to the document to accommodate ISO rules (a sed script
was used to make the changes to the troff sources from which the camera-ready copy of the ANSI and ISO
standards was created). For instance, the word Standard was replaced by International Standard and some
major section numbers were changed. More significantly, the Rationale ceased to be included as part of the
document (and the list of names of the committee members was removed). After publication of this ISO
standard in 1990, ANSI went through its procedures for withdrawing their original document and adopting
the ISO Standard. Subsequent purchasers of the ANSI standard see, for instance, the words International
Standard not just Standard.

2 Updates to C90
Part of the responsibility of an ISO Working Group is to provide answers to queries raised against any defect report

published standard they are responsible for. During the early 1990s, the appropriate ISO procedure seemed
to be the one dealing with defects, and it was decided to create a Defect Report log (entries are commonly
known as DRs). These procedures were subsequently updated and defect reports were renamed interpretation
requests by ISO. The C committee continues to use the term defect and DR, as well as the new term
interpretation request.

Standards Committees try to work toward a publication schedule. As the (self-imposed) deadline for
publication of the C Standard grew nearer, several issues remained outstanding. Rather than delay the
publication date, it was agreed that these issues should be the subject of an Amendment to the Standard.
The purpose of this Amendment was to address issues from Denmark (readable trigraphs), Japan (additional
support for wide character handling), and the UK (tightening up the specification of some constructs whose
wording was considered to be ambiguous). The title of the Amendment was C Integrity.

As work on DRs (this is how they continue to be referenced in the official WG14 log) progressed, it
became apparent that the issues raised by the UK, to be handled by the Amendment, were best dealt with
via these same procedures. It was agreed that the UK work item would be taken out of the Amendment and
converted into a series of DRs. The title of the Amendment remained the same even though the material that
promoted the choice of title was no longer included within it.

January 30, 2008 v 1.1 7

Introduction 2 Updates to C900

To provide visibility for those cases in which a question had uncovered problems with wording in the
published standard the Committee decided to publish collections of DRs. The ISO document containing such
corrections is known as a Technical Corrigendum (TC) and two were published for C90. A TC is normative
and contains edits to the existing standard’s wording only, not the original question or any rationale behind
the decision reached. An alternative to a TC is a Record of Response (RR), a non-normative document.

Wording from the Amendment, the TCs and decisions on defect reports that had not been formally
published were integrated into the body of the C99 document.

A determined group of members of X3J11, the ANSI Committee, felt that C could be made more attractive
to numerical programmers. To this end it was agreed that this Committee should work toward producing a
technical report dealing with numerical issues.

The Numerical C Extensions Group (NCEG) was formed on May 10, 1989; its official designation wasNCEG

X3J11.1. The group was disbanded on January 4, 1994. The group produced a number of internal, committee
reports, but no officially recognized Technical Reports were produced. Topics covered included: compound
literals and designation initializers, extended integers via a header, complex arithmetic, restricted pointers,
variable length arrays, data parallel C extensions (a considerable amount of time was spent on discussing the
merits of different approaches), and floating-point C extensions. Many of these reports were used as the base
documents for constructs introduced into C99.base doc-

ument
Support for parallel threads of execution was not addressed by NCEG because there was already an ANSI

Committee, X3H5, working toward standardizing a parallelism model and Fortran and C language bindings
to it.

C++

Many developers view C++ as a superset of C and expect to be able to migrate C code to C++. While this
book does not get involved in discussing the major redesigns that are likely to be needed to make effective
use of C++, it does do its best to dispel the myth of C being a subset of C++. There may be a language that
is common to both, but these sections tend to concentrate on the issues that need to be considered when
translating C source using a C++ translator.

What does the C++ Standard, ISO/IEC 14882:1998(E), have to say about constructs that are in C99?

• Wording is identical. Say no more.

• Wording is similar. Slight English grammar differences, use of terminology differences and other
minor issues. These are sometimes pointed out.

• Wording is different but has the same meaning. The sequence of words is too different to claim they
are the same. But the meaning appears to be the same. These are not pointed out unless they highlight
a C++ view of the world that is different from C.

• Wording is different and has a different meaning. Here the C++ wording is quoted, along with a
discussion of the differences.

• No C++ sentence can be associated with a C99 sentence. This often occurs because of a construct that
does not appear in the C++ Standard and this has been pointed out in a previous sentence occurring
before this derived sentence.

There is a stylized form used to comment source code associated with C— /* behavior */— and C++—
// behavior.

The precursor to C++ was known as C with Classes. While it was being developed C++ existed in an
environment where there was extensive C expertise and C source code. Attempts by Stroustrup to introduce
incompatibilities were met by complaints from his users.[435]

The intertwining of C and C++, in developers mind-sets, in vendors shipping a single translator with a
language selection option, and in the coexistence of translation units written in either language making up
one program means that it is necessary to describe any differences between the two.

8 v 1.1 January 30, 2008

2 Updates to C90 Introduction 0

The April 1989 meeting of WG14 was asked two questions by ISO: (1) should the C++ language be
standardized, and (2) was WG14 the Committee that should do the work? The decision on (1) was very
close, some arguing that C++ had not yet matured sufficiently to warrant being standardized, others arguing
that working toward a standard would stabilize the language (constant changes to its specification and
implementation were causing headaches for developers using it for mission-critical applications). Having
agreed that there should be a C++ Standard WG14 was almost unanimous in stating that they were not the
Committee that should create the standard. During April 1991 WG21, the ISO C++ Standard’s Committee
was formed; they met for the first time two months later.

In places additional background information on C++ is provided. Particularly where different concepts, or
terminology, are used to describe what is essentially the same behavior.

In a few places constructs available in C++, but not C, are described. The rationale for this is that a C
developer, only having a C++ translator to work with, might accidentally use a C++ construct. Many C++

translators offer a C compatibility mode, which often does little more than switch off support for a few C++

constructs. This description may also provide some background about why things are different in C++.
Everybody has a view point, even the creator of C++, Bjarne Stroustrup. But the final say belongs to the

standards’ body that oversees the development of language standards, SC22. The following was the initial
position.

Resolutions Prepared at the Plenary Meeting of

ISO/IEC JTC 1/SC22

Vienna, Austria

September 23–29, 1991

Resolution AK Differences between C and C++

Notwithstanding that C and C++ are separate languages, ISO/IEC JTC1/SC22 directs WG21 to document
differences in accordance with ISO/IEC TR 10176.

Resolution AL WG14 (C) and WG21 (C++) Coordination

While recognizing the need to preserve the respective and different goals of C and C++, ISO/IEC JTC1/SC22
directs WG14 and WG21 to ensure, in current and future development of their respective languages, that
differences between C and C++ are kept to the minimum. The word "differences" is taken to refer to strictly
conforming programs of C which either are invalid programs in C++ or have different semantics in C++.

This position was updated after work on the first C++ Standard had been completed, but too late to have any
major impact on the revision of the C Standard.

Resolutions Prepared at the Eleventh Plenary Meeting of

ISO/IEC JTC 1/SC22

Snekkersten, Denmark

August 24–27, 1998

Resolution 98-6: Relationship Between the Work of WG21 and that of WG14

Recognizing that the user communities of the C and C++ languages are becoming increasingly divergent,
ISO/IEC JTC 1/SC22 authorizes WG21 to carry out future revisions of ISO/IEC 14882:1998 (Programming
Language C++) without necessarily adopting new C language features contained in the current revision to
ISO/IEC 9899:1990 (Programming Language C) or any future revisions thereof.

ISO/IEC JTC 1/SC22 encourages WG14 and WG21 to continue their close cooperation in the future.

Other Languages
Why are other languages discussed in this book? Developers are unlikely to spend their entire working life
using a single language (perhaps some Cobol and Fortran programmers may soon achieve this).

January 30, 2008 v 1.1 9

Introduction 3 Introduction0

C is not the only programming language in the world (although some developers act as if it were).
Characteristics of other languages can help sharpen a developer’s comprehension of the spirit (design, flavor,
world-view) of C. Some of C’s constructs could have been selected in several alternative ways, others
interrelate to each other.

The functionality available in C can affect the way an algorithm is coded (not forgetting individual personal
differences[362, 363]). Sections of source may only be written that way because that is how things are done in
C; they may be written differently, and have different execution time characteristics,[364] in other languages.
Appreciating the effects of C language features in the source they write can be very difficult for developers to
do; rather like a fish trying to understand the difference between water and dry land.

Some constructs are almost universal to all programming languages, others are unique to C (and often
C++). Some constructs are common to a particular class of languages— algorithmic, functional, imperative,
formal, and so on. The way things are done in C is not always the only way of achieving the same result, or
the same algorithmic effect. Sometimes C is unique. Sometimes C is similar to what other languages do.
Sometimes there are languages that do things very differently from C, either in implementing the same idea,
or in having a different view of the world.

It is not the intent to claim that C or any other language is better or worse because it has a particular design
philosophy, or contains a particular construct. Neither is this subsection intended as a survey of what other
languages do. No attempt is made to discuss any other language in any way apart from how it is similar or
different from C. Other languages are looked at from the C point of view.

Developers moving from C to another language will, for a year or so (or longer depending on the time
spent using the new language), tend to use that language in a C-like style (much the same as people learning
English tend to initially use the grammar and pronunciations of their native language; something that fluent
speakers have no trouble hearing).

Your author’s experience with many C developers is that they tend to have a C is the only language worth
knowing attitude. This section is unlikely to change that view and does not seek to. Some knowledge of how
other languages do things never hurt.

There are a few languages that have stood the test of time, Cobol and Fortran for example. While Pascal
and Ada may have had a strong influence on the thinking about how to write maintainable, robust code,
they have come and gone in a relatively short period of time. At the time of this writing there are six
implementations of Ada 95. A 1995 survey[173] of language usage found 49.5 million lines of Ada 83 (C89
32.5 million, other languages 66.18 million) in DoD weapon systems. The lack of interest in the Pascal
standard is causing people to ask whether it should be withdrawn as a recognized standard (ISO rules require
that a standard be reviewed every five years). The Java language is making inroads into the embedded
systems market (the promise of it becoming the lingua franca of the Internet does not seem to have occurred).
It is also trendy, which keeps it in the public eye. Lisp continues to have a dedicated user base 40 years after
its creation. A paper praising its use, over C, has even been written.[121]

The references for the other languages mentioned in this book are: Ada,[189] Algol 68,[473] APL,[194]

BCPL,[378] CHILL,[196] Cobol,[181] Fortran,[187] Lisp[192] (Scheme[217]), Modula-2,[190] Pascal,[186] Perl,[485]

PL/1,[180] Snobol 4,[152] and SQL.[188]

References for the implementation of languages that have significant differences from C include APL,[55]

functional languages,[347] and ML.[18]

Common Implementations

3 Introduction
This subsection gives an overview of translator implementation issues. The specific details are discussed in
the relevant sentence. The following are the main issues.

• Translation environment. This environment is defined very broadly here. It not only includes the
language specification (dialects and common extensions), but customer expectations, known translation

10 v 1.1 January 30, 2008

3 Introduction Introduction 0

1954

1960

1968

1966

1974

1977

1979

1980

1983

1985

1989

1990

1991

1992

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2007

IBM Mathematical
FORmula TRANslating System

FORTRAN

FORTRAN 66
ANSI X3.9-1966

COBOL
First officially published version

COBOL 68
published by USASI

FORTRAN 77
ANSI X3.9-1978

COBOL
ANSI X3.23-1974

COBOL
ISO 1989:1978

COBOL
ISO 1989:1985

FORTRAN ISO 1539-1980(E)

The C Programming Language
by Kernighan & Ritchie

ANSI C committee formed

Stroustrup starts work on C with classes

The C++ Programming Language
by Bjarne Stroustrup

Fortran 90 ISO 1539:1991(E)

ANSI C Standard ANSI X3.159-1989

Intrinsic Functions
ISO 1989:1985/Amd.1:1992

WG14 turns down offer
to standardise C++

Control of C Standard moves to
ISO/IEC JTC 1/SC22 WG14

ISO/IEC 9899:1990 published
ISO/IEC JTC 1/SC22 WG21 formed

ISO/IEC 9899/COR1:1994
Technical Corrigendum 1

C++ ISO/IEC 14882:1998

Fortran 95 ISO/IEC 1539-1:1997

Corrections
ISO 1989:1985/Amd.2:1994

ISO/IEC 9899/AMD1:1995
Amendment 1

C Integrity

COBOL
ISO 1989:2002

ISO/IEC 9899/COR1:1996
Technical Corrigendum 2

Work starts on
revising the C Standard

ISO/IEC 9899:1999 replaces
ISO/IEC 9899:1990

The Java Language Specification

Java withdrawn from ISO and
ECMA standardization process

Conditional Compilation
ISO/IEC 1539-3:1998

ISO/IEC 14882/TC1:2003
Technical Corrigendum 1

Varying Length Character Strings
ISO/IEC 1539-2:2000

ISO/IEC 9899:1999/Cor 1:2001
Technical Corrigendum 1

Fortran 2003 ISO 1539:2004(E)

ISO/IEC TR18037
Embedded C

ISO/IEC 9899:1999/Cor 2:2004
Technical Corrigendum 2

ISO/IEC TR18015
C++ Performance

ISO/IEC 9899:1999/Cor 3:2007
Technical Corrigendum 3

Figure 0.2: Outline history of the C language and a few long-lived languages. (Backus[21] describes the earliest history of
Fortran.)

January 30, 2008 v 1.1 11

Introduction 4 Translation environment0

technology and the resources available to develop and maintain translators. Like any other application
development project, translators have to be written to a budget and time scale.

• Execution environment. This includes the characteristics of the processor that will execute the program
image (instruction set, number of registers, memory access characteristics, etc.), and the runtime
interface to the host environment (storage allocation, function calling conventions, etc.).

• Measuring implementations. Measurements on the internal working of translators is not usually
published. However, the execution time characteristics of programs, using particular implementations,
is of great interest to developers and extensive measurements are made (many of which have been
published).

4 Translation environment
The translation environment is where developers consider their interaction with an implementation to occur.
Any requirement that has existed for a long period of time (translators, for a variety of languages, have existed
for more than 40 years; C for 25 years) establishes practices for how things should be done, accumulates a
set of customer expectations, and offers potential commercial opportunities.

Although the characteristics of the language that need to be translated have not changed significantly,
several other important factors have changed. The resources available to a translator have significantly
increased and the characteristics of the target processors continue to change. This increase in resources and
need to handle new processor characteristics has created an active code optimization research community.

4.1 Developer expectations
Developers have expectations about what language constructs mean and how implementations will processdeveloper

expectations them. At the very least developers expect a translator to accept their existing source code and generate to a
program image from it, the execution time behavior being effectively the same as the last implementation
they used. Implementation vendors want to meet developer expectations whenever possible; it reduces the
support overhead and makes for happier customers. Authors of translators spend a lot of time discussing
what their customers expect of their product; however, detailed surveys of customer requirements are rarely
carried out. What is available is existing source code. It is this existing code base that is often taken as
representing developers expectations (translators should handle it without complaint, creating programs that
deliver the expected behavior).

Three commonly encountered expectations are good performance, low code expansion ratio, and no
surprising behavior; the following describes these expectations in more detail.

1. C has a reputation for efficiency. It is possible to write programs that come close to making optimum
usage of processor resources. Writing such code manually relies on knowledge of the processor and
how the translator used maps constructs to machine code. Very few developers know enough about
these subjects to be able to consistently write very efficient programs. Your author sometimes has
trouble predicting the machine code that would be generated when using the compilers he had written.
As a general rule, your author finds it safe to say that any ideas developers have about the most efficient
construct to use, at the statement level, are wrong. A cost effective solution is to not worry about
statement level efficiency issues and let the translator look after things.

2. C has a reputation for compactness. The ratio of machine code instructions per C statement is often
a small number compared to other languages. It could be said that C is a WYSIWYG language, the
mapping from C statement to machine code being simple and obvious (leaving aside what an optimizer
might subsequently do). This expectation was used by some members of WG14 as an argument against
allowing the equality operator to have operands with structure type; a single operator potentially
causing a large amount of code, a comparison for each member, to be generated. The introduction of
the inline function-specifier has undermined this expectation to some degree (depending on whether

function
specifier

syntax
inline is thought of as a replacement for function-like macros, or the inlining of functions that wouldmacro

function-like

not have been implemented as macros).

12 v 1.1 January 30, 2008

4 Translation environment Introduction 0

3. C has a reputation for being a consistent language. Developers can usually predict the behavior of the
code they write. There are few dark corners whose accidental usage can cause constructs to behave in
unexpected ways. While the C committee can never guarantee that there would never be any surprising
behaviors, it did invest effort in trying to ensure that the least-surprising behaviors occurred.

4.2 The language specification
The C Standard does not specify everything that an implementation of it has to do. Neither does it prevent common im-

plementations
language

specification
vendors from adding their own extensions. C is not a registered trademark that is policed to ensure
implementations follow its requirements; unlike Ada, which until recently was a registered trademark, owned
by the US Department of Defense, which required that an implementation pass a formal validation procedure
before allowing it to be called Ada. The C language also has a history— it existed for 13 years before a
formally recognized standard was ratified.

The commercial environments in which C was originally used have had some influence on its specification.
The C language started life on comparatively small platforms and the source code of a translator (pcc, the
portable C compiler[201]) was available for less than the cost of writing a new one. Smaller hardware vendors
without an established customer base, were keen to promote portability of applications to their platform.
Thus, there were very few widely accepted extensions to the base language. In this environment vendors
tended to compete more in the area of available library functions. For this reason, significant developer
communities, using different dialects of C, were not created. Established hardware vendors are not averse to
adding language extensions specific to their platforms, which resulted in several widely used dialects of both
Cobol and Fortran.

Implementation vendors have found that they can provide a product that simply follows the requirements
contained in the C Standard. While some vendors have supplied options to support for some prestandard
language features, the number of these features is small.

Although old source code is rarely rewritten, it still needs a host to run on. The replacement of old hosts
by newer ones means that either existing source has to be ported, or new software acquired. In both cases
it is likely that the use of prestandard C constructs will diminish. Many of the programs making use of C
language dialects, so common in the 1980s, are now usually only seen executing on very old hosts. The few
exceptions are discussed in the relevant sentences.

4.3 Implementation products
Translators are software products that have customers like any other application. The companies that produce
them have shareholders to satisfy and, if they are to stay in business, need to take commercial issues into
account. It has always been difficult to make money selling translators and the continuing improvement in
the quality of Open Source C translators makes it even harder. Vendors who are still making most of their
income by selling translators, as opposed to those who have to supply one as part of a larger sale, need to be
very focused and tend to operate within specific markets.[498] For instance, some choose to concentrate on the
development process (speed of translation, integrated development environment, and sophisticated debugging
tools), others on the performance of the generated machine code (Kuck & Associates, purchased by Intel,
for parallelizing scientific and engineering applications, Code Play for games developers targeting the Intel
x86 processor family). There are even specialists within niches. For instance, within the embedded systems
market Byte Craft concentrates on translators for 8-bit processors. Vendors who are still making most of their
income from selling other products (e.g., hardware or operating systems) sometimes include a translator as a
loss leader. Given its size there is relatively little profit for Microsoft in selling a C/C++ translator; having a
translator gives the company greater control over its significantly more profitable products (written in those
languages) and, more importantly, mind-share of developers producing products for its operating systems.

It is possible to purchase a license for a C translator front-end from several companies. While writing
one from scratch is not a significant undertaking (a few person years), writing anything other than a straight-
forward code generator can require a large investment. By their very nature, many optimization techniques
deal with special cases, looking to fine-tune the use of processor resources. Ensuring that correct code is

January 30, 2008 v 1.1 13

Introduction 4 Translation environment0

generated, for all the myriad different combinations of events that can occur, is very time-consuming and
expensive.

The performance of generated machine code is rarely the primary factor in developer selection of which
translator to purchase, if more than one is available to choose from. Factors such as implicit Vendor preference
(it is said that nobody is sacked for buying Microsoft), preference for the development environment provided,
possessing existing code that is known to work well with a particular vendor’s product, and many other
possible issues. For this reason optimization techniques often take many years to find their way from
published papers to commercial products, if at all.[382]

Companies whose primary business is the sale of translators do not seem to grow beyond a certain point.
The largest tend to have a turnover in the tens of millions of dollars. The importance of translators to
companies in other lines of business has often led to these companies acquiring translator vendors, both
for the expertise of their staff and for their products. Several database companies have acquired translator
vendors to use their expertise and technology in improving the performance of the database products (the
translators subsequently being dropped as stand-alone products).

Overall application performance is often an issue in the workstation market. Here vendors, such as HP,
SGI, and IBM, have found it worthwhile investing in translator technology that improves the quality of
generated code for their processors. Potential customers evaluating platforms using benchmarks will be
looking at numbers that are affected by both processor and translator performance— the money to be made
from multiple hardware sales being significantly greater than that from licensing a translator to relatively few
developers. These companies consider it worthwhile to have an in-house translator development group.

GCC, the GNU C compiler[426] (now renamed the GNU Compiler Collection; the term gcc will be usedGCC

here to refer to the C compiler), was distributed in source code form long before Linux and the rise of the Open
Source movement. Its development has been checkered, but it continues to grow from strength to strength.
This translator was designed to be easily retargeted to a variety of different processors. Several processor
vendors have provided, or funded ports of the back end to their products. Over time the optimizations
performed by GCC have grown more sophisticated. This has a lot to do with researchers using GCC as the
translator on which to implement and test their optimization ideas. On those platforms where its generated
machine code does not rank first in performance, it usually ranks second.

The source code to several other C translators has also been released under some form of public use
license. These include: lcc[132] along with vpo (very portable optimizer[40]), the SGIPRO C compiler[409]

(which performs many significant optimizations), the TenDRA C/C++ project,[15] Watcom,[488] Extensible
Interactive C (an interpreter),[53] and the Trimaran compiler system.[17]

The lesson to be drawn from these commercial realities is that developers should not expect a highly
competitive market in language translators.[498] Investing large amounts of money in translator development
is unlikely to be recouped purely from sales of translators (some vendors make the investment to boost the
sales of their processors). Developers need to work with what they are given.

4.4 Translation technology
Translators for C exist within a community of researchers (interested in translation techniques) and alsotranslation tech-

nology translators for other languages. Some techniques have become generally accepted as the way some construct
is best implemented; some are dictated by trends that come and go. This book does not aim to document
every implementation technique, but it may discuss the following.

• How implementations commonly map constructs for execution by processors.

• Unusual processor characteristics, which affect implementations.

• Common extensions in this area.

• Possible trade-offs involved in implementing a construct.

• The impact of common processor architectures on the C language.

14 v 1.1 January 30, 2008

4 Translation environment Introduction 0

In the early days of translation technology vendors had to invest a lot of effort simply to get them to run
within the memory constraints of the available development environments. Many existed as a collection of
separate programs, each writing output to be read by the succeeding phase, the last phase being assembler
code that needed to be processed by an assembler.

Ever since the first Fortran translator[21] the quality of machine code produced has been compared to
handwritten assembler. Initially translators were only asked to not produce code that was significantly
worse than handwritten assembler; the advantages of not having to retrain developers (in new assembly
languages) and rewrite applications outweigh the penalties of less performance. The fact that processors
changed frequently, but software did not, was a constant reminder of the advantages of using a machine-
independent language. Whether most developers stopped making the comparison against handwritten
assembler because fewer of them knew any assembler, or because translators simply got better is an open
issue. In some application domains the quality of code produced by translators is nowhere near that of
handwritten assembler[419] and many developers still need to write in machine code to be able to create usable
applications.

Much of the early work on translators was primarily concerned with different language constructs and
parsing them. A lot of research was done on various techniques for parsing grammars and tools for
compressing their associated data tables. The work done at Carnegie Mellon on the PQCC project[261]

introduced many of the ideas commonly used today. By the time C came along there were some generally
accepted principles about how a translator should be structured.

A C translator usually operates in several phases. The first phase (called the front-end by compiler writers footnote
5

and often the parser by developers) performs syntax and semantic analysis of the source code and builds a
tree representation (usually based on the abstract syntax); it may also map operations to an intermediate form
(some translators have multiple intermediate forms, which get progressively lower as constructs proceed
through the translation process) that has a lower-level representation than the source code but a higher-level
than machine code. The last phase (often called the back-end by compiler writers or the code generator by
developers) takes what is often a high-level abstract machine code (an intermediate code) and maps it to
machine code (it may generate assembler or go directly to object code). Operations, such as storage layout storage

layout
and optimizations on the intermediate code, could be part of one of these phases, or be a separate phase
(sometimes called the middle-end by compiler writers).

The advantage of generating machine code from intermediate code is a reduction in the cost of retargeting
the translator to a new processor; the front-end remains virtually the same and it is often possible to reuse
substantial parts of later passes. It becomes cost effective for a vendor to offer a translator that can generate
machine code for different processors from the same source code. Many translators have a single intermediate
code. GCC currently has one, called RTL (register transfer language), but may soon have more (a high-level,
machine-independent, RTL, which is then mapped to a more machine specific form of RTL). Automatically
deriving code generators from processor descriptions[64] sounds very attractive. However, until recently new
processors were not introduced sufficiently often to make it cost effective to remove the human compiler
written from the process. The cost of creating new processors, with special purpose instruction sets, is being
reduced to the point where custom processors are likely to become very common and automatic derivation of
code generators is essential to keep these costs down.[246, 259]

The other advantage of breaking the translator into several components is that it offers a solution to the
problem caused by a common host limitation. Many early processors limited the amount of memory available
to a program (64 K was a common restriction). Splitting a translator into independent components (the
preprocessor was usually split off from the syntax and semantics processing as a separate program) enabled
each of them to occupy this limited memory in turn. Today most translators have many megabytes of storage
available to them; however, many continue to have internal structures designed when storage limitations were
an important issue.

There are often many different ways of translating C source into machine code. Developers invariably
want their programs to execute as quickly as possible and have been sold on the idea of translators that

January 30, 2008 v 1.1 15

Introduction 4 Translation environment0

perform code optimization. There is no commonly agreed on specification for exactly what a translator needs
to do to be classified as optimizing, although claims made in a suitably glossy brochure is often sufficient for
many developers.

4.4.1 Translator optimizations
Traditionally optimizations have been aimed at reducing the time needed to execute a program (this is whattranslator opti-

mizations the term increasing program performance is usually intended to mean) or reducing the size of the program
image (this usually means the amount of storage occupied during program execution— consisting of machine
code instructions, some literal values, and object storage). Many optimizations have the effect of increasing
performance and reducing size. However, there are some optimizations that involve making a trade-off
between performance and size.

The growth in mobile phones and other hand-held devices containing some form of processor have created
a new optimization requirement— power minimization. Software developers want to minimize the amount of
electrical power required to execute a program. This optimization requirement is likely to be new to readers;
for this reason a little more detail is given at the end of this subsection.

Some of the issues associated with generating optimal machine code for various constructs are discussed
within the sentences for those constructs. In some cases transformations are performed on a relatively
high-level representation and are relatively processor-independent (see Bacon, Graham, and Sharp[22] for a
review). Once the high-level representation is mapped to something closer to machine code, the optimizations
can become very dependent on the characteristics of the target processor (Bonk and Rüde[48] look at number
crunchers). The general techniques used to perform optimizations at different levels of representation can be
found in various books.[4, 132, 154, 312]

The problems associated with simply getting a translator written became tractable during the 1970s.
Since then the issues associated with translators have been the engineering problem of being able to process
existing source code and the technical problem of generating high-quality machine code. The focus of
code optimization research continues to evolve. It started out concentrating on expressions, then basic
blocks, then complete functions and now complete programs. Hardware characteristics have not stood still
either. Generating optimized machine code can now require knowledge of code and data cache behaviors,
speculative execution, dependencies between instructions and their operands. There is also the issue of
processor vendors introducing a range of products, all supporting the same instruction set but at different
price levels and different internal performance enhancements; optimal instruction selection can now vary
significantly across a single processor family.

Sometimes all the information about some of the components used by a program will not be known until
it is installed on the particular host that executes it; for instance, any additional instructions supported over
those provided in the base instruction set for that processor, the relative timings of instructions for that
processor model, and the version of any dynamic linked libraries. These can also change because of other
systems software updates. Also spending a lot of time during application installation generating an optimal
executable program is not always acceptable to end users. One solution is to perform optimizations on the
program while it is executing. Because most of the execution time usually occurs within a small percentage
of a program’s machine code, an optimizer only needs to concentrate on these areas. Experimental systems
are starting to deliver interesting results.[221]

Thorup[454] has shown that a linear (in the number of nodes and vertices in the control flow graph)
algorithm for register allocation exists that is within a factor of seven (six if no short-circuit evaluation is
used) of the optimal solution for any C program that does not contain gotos.

One way of finding optimal instruction sequences is to generate all possible sequences and to select the
optimal one that provides the desired input to output transformation. Massalin[279] built a superoptimizer
to do just that; it worked off-line and was not intended to be used to generate instruction sequences during
translation. Bansal and Aiken[32] built a superoptimizer that is intended to be used within a translator to find
optimal instruction sequences. The tools used various strategies to reduce the search space, e.g., pruning
instruction sequences known to be nonoptimal and maintaining a database of previously generated optimal

16 v 1.1 January 30, 2008

4 Translation environment Introduction 0

Instruction type

Pe
rc

en
ta

ge

add sub mult div and or xor sll srl sra fadd fsub fmul fdiv fabs total

0

25

50

75

100

SPEC

Mediabench

Figure 0.3: Dynamic frequency, percentage calculated over shown instructions (last column gives percentage of these instruction
relative to all instructions executed) during execution of the SPEC and MediaBench benchmarks of some computational oriented
instructions. Adapted from Yi and Lilja.[501]

sequences.
Code optimization is a, translation time, resource-hungry process. To reduce the quantity of analysis that

needs to be performed, optimizers have started to use information on a program’s runtime characteristics.
This profile information enables optimizers to concentrate resources on frequently executed sections of code
(it also provides information on the most frequent control flow path in conditional statements, enabling the
surrounding code to be tuned to this most likely case).[155, 500] However, the use of profile information does
not always guarantee better performance.[244]

The stability of execution profiles, that is the likelihood that a particular data set will always highlight the
same sections of a program as being frequently executed is an important issue. A study by Chilimbi[70] found
that data reference profiles, important for storage optimization, were stable, while some other researchers
have found that programs exhibit different behaviors during different parts of their execution.[402]

Optimizers are not always able to detect all possible savings. A study by Yi and Lilja[501] traced the values
of instruction operands during program execution. They found that a significant number of operations could
have been optimized (see Figure 0.3) had one of their operand values been known at translation time (e.g.,
adding/subtracting zero, multiplying by 1, subtracting/dividing two equal values, or dividing by a power of
2).

Power consumption optimize
power con-

sumptionThe following discussion is based one that can be found in Hsu, Kremer and Hsiao.[178] The dominant
source of power consumption in digital CMOS circuits (the fabrication technology used in mass-produced
processors) is the dynamic power dissipation, P , which is based on three factors:

P ∝ CV 2F (0.1)

where C is the effective switching capacitance, V the supply voltage, and F the clock speed. A number of
technical issues prevent the voltage from being arbitrarily reduced, but there are no restrictions on reducing
the clock speed (although some chips have problems running at too low a rate).

For cpu bound programs simply reducing the clock speed does not usually lead to any significant saving
in total power consumption. A reduction in clock speed often leads to a decrease in performance and the
program takes longer to execute. The product of dynamic power consumption and time taken to execute
remains almost unchanged (because of the linear relationship between dynamic power consumption and
clock speed). However, random access memory is clocked at a rate that can be an order of magnitude less
than the processor clock rate.

January 30, 2008 v 1.1 17

Introduction 5 Execution environment0

For memory-intensive applications a processor can be spending most of its time doing nothing but waiting
for the results of load instructions to appear in registers. In these cases a reduction in processor clock rate
will have little impact on the performance of a program. Program execution time, T , can be written as:

T = Tcpu_busy + Tmemory_busy + Tcpu_and_mem_busy (0.2)

An analysis (using a processor simulation) of the characteristics of the following code:

1 for (j = 0; j < n; j++)
2 for (i = 0; i < n; i++)
3 accu += A[i][j];

found that (without any optimization) the percentage of time spent in the various subsystems was: cpu_busy=0.01%,
memory_busy=93.99%, cpu_and_mem_busy=6.00%.

Given these performance characteristics, a factor of 10 reduction in the clock rate and a voltage reduction
from 1.65 to 0.90 would reduce power consumption by a factor of 3, while only slowing the program down
by 1% (these values are based on the Crusoe TM5400 processor).

Performing optimizations changes the memory access characteristics of the loop, as well as potentially
reducing the amount of time a program takes to execute. Some optimizations and their effect on the
performance of the preceding code fragment include the following:

• Reversing the order of the loop control variables (arrays in C are stored in row-major order) createsloop control
variable

array
row-major

storage order
spatial locality, and values are more likely to have been preloaded into the cache: cpu_busy=18.93%,
memory_busy=73.66%, cpu_and_mem_busy=7.41%

• Loop unrolling increases the amount of work done per loop iteration (decreasing loop housekeepingloop unrolling

overhead and potentially increasing the number of instructions in a basic block): cpu_busy=0.67%,basic block

memory_busy=65.60%, cpu_and_mem_busy=33.73%

• Prefetching data can also be a worthwhile optimization:[474] cpu_busy=0.67%, memory_busy=74.04%,
cpu_and_mem_busy=25.29%

These ideas are still at the research stage[177] and have yet to appear in commercially available translators
(support, in the form of an instruction to change frequency/voltage, also needs to be provided by processor
vendors).

At the lowest level processors are built from transistors, which are grouped together to form logic gates.
In CMOS circuits power is dissipated in a gate when its output changes (i.e., it goes from 0 to 1, or from 1 to
0). Vendors interested in low power consumption try to minimize the number of gate transitions made during
the operation of a processor. Translators can also help here. Machine code instructions consist of sequences
of zeros and ones. Differences in bit patterns between adjacent instructions, encountered during program
execution, cause gate transitions. The Hamming distance between two binary values (instructions) is the
number of places at which their bit settings differ. Ordering instructions to minimize the total Hamming
distance over the entire sequence will reduce power consumption in the instruction decoding area of a
processor. Simulations based on such a reordering have shown savings of 13% to 20%.[251]

5 Execution environment
Two kinds of execution environment are specified in the C Standard, hosted and freestanding. These tendenvironment

execution

to affect implementations in terms of the quantity of resources provided (functionality to support library
requirements— e.g., I/O, memory capacity, etc.).

There are classes of applications that tend to occur in only one of these environments, which can make it
difficult to classify an issue as being application- or environment-based.

18 v 1.1 January 30, 2008

5 Execution environment Introduction 0

For hosted environments C programs may need to coexist with programs written in a variety of languages.
Vendors often define a set of conventions that programs need to follow; for instance, how parameters are
passed. The popularity of C for systems development means that such conventions are often expressed in C
terms and the implementations of other languages have to adapt to the C view of how things work.

Existing environments have affected the requirements in the C Standard library. Unlike some languages
the C language has tried to take the likely availability of functionality in different environments into account.
For instance, the inability of some hosts to support signals has meant that there is no requirement that any
signal handling (other than function stubs) be provided by an implementation. Minimizing the dependency
on constructs being supported by a host environment enables C to be implemented on a wide variety of
platforms. This wide implementability comes at the cost of some variability in supported constructs.

5.1 Host processor characteristics
It is often recommended that developers ignore the details of host processor characteristics. However, the C host processors

introductionlanguage was, and continues to be, designed for efficient mapping to commonly available processors. Many
of the benchmarks by which processor performance is measured are written in C. A detailed analysis of C 0 SPEC

benchmarks

needs to include a discussion of processor characteristics.
Many developers continue to show a strong interest in having their programs execute as quickly as

possible, and write code that they think will achieve this goal. Developer interest in processor characteristics
is often driven by this interest in performance and efficiency. Developer interest in performance could
be considered to be part of the culture of programming. It does not seem to be C specific, although this
language’s reputation for efficiency seems to exacerbate it. There is sometimes a customer-driven requirement
for programs to execute within resource constraints (execution time and memory being the most common
constrained resources). In these cases detailed knowledge of processor characteristics may help developers
tune an application (although algorithmic tuning invariably yields higher returns on investment). However,
the information given in this book is at the level of a general overview. Developers will need to read processor
vendor’s manuals, very carefully, before they can hope to take advantage of processor-specific characteristics
by changing how they write source code.

The following are the investment issues, from the software development point of view, associated with
processor characteristics:

• Making effective use of processor characteristics usually requires a great deal of effort (for an in-depth
tutorial on getting the best out of a particular processor see,[451] for an example of performance
forecasting aimed at future processors see Armstrong and Eigenmann[20]). The return on investment of
this effort is often small (if not zero). Experience shows that few developers invest the time needed to
systematically learn about individual processor characteristics. Preferring, instead, to rely on what
they already know, articles in magazines, and discussions with other developers. A small amount of
misguided investment is no more cost effective than overly excessive knowledgeable investment.

• Processors change more frequently than existing code. Although there are some application domains
where it appears that the processor architecture is relatively fixed (e.g., the Intel x86 and IBM
360/370/3080/3090/etc.), the performance characteristics of different members of the same family can
still vary dramatically. Within the other domains new processor architectures are still being regularly
introduced. The likelihood of a change of processor remains an important issue.

• The commercial availability of translators capable of producing machine code, the performance of translator per-
formance

vs. assemblerwhich is comparable to that of handwritten assembler (this is not true in some domains;[419] one
study[469] found that in many cases translator generated machine code was a factor of 5–8 times slower
than hand crafted assembler) means that any additional return on developer resource investment is
likely to be low.

Commercial and application considerations have caused hardware vendors to produce processors aimed at
several different markets. It can be said that there are often family characteristics of processors within a

January 30, 2008 v 1.1 19

Introduction 5 Execution environment0

Year

M
on

th
ly

 s
al

es
 (i

n
10

00
’s

)

100,000

200,000

300,000

Jan 90 Jan 91 Jan 92 Jan 93 Jan 94 Jan 95 Jan 96 Jan 97 Jan 98 Jan 99 Jan 00 Jan 01

× 4 bits
• 8 bits
∆ 16 bits
. 32 bits

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•

×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•×

.∆

•
×

.∆

•×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•
×

.∆

•

×

.∆

•
×

.∆

•
×

.∆

•

×

.∆

•×

.∆

•
×

.∆

•

×

.∆

•
×

.∆

•
×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.
∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.
∆

•

×

.∆

•

×

.
∆

•

×

.
∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.∆

•

×

.
∆

•

×

.∆

•

×

.∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

.
∆

•

×

Figure 0.4: Monthly unit sales of microprocessors having a given bus width. Adapted from Turley[459] (using data
supplied by Turley).

given market, although the boundaries are blurred at times. It is not just the applications that are executed
on certain kinds of processors. Often translator vendors target their products at specific kinds of processors.
For instance, a translator vendor may establish itself within the embedded systems market. The processor
architectures can have a dramatic effect on the kinds of problems that machine code generators and optimizers
need to concern themselves with. Sometimes the relative performance of programs written in C, compared to
handwritten assembler, can be low enough to question the use of C at all.

• General purpose processors. These are intended to be capable of running a wide range of applications.
The processor is a significant, but not dominant, cost in the complete computing platform. The growing
importance of multimedia applications has led many vendors to extend existing architectures to include
instructions that would have previously only been found in DSP processors.[419] The market size can
vary from tens of millions (e.g., Intel x86[445]) to hundreds of millions (e.g., ARM[445]).

• Embedded processors. These are used in situations where the cost of the processor and its supporting
chip set needs to be minimized. Processor costs can be reduced by reducing chip pin-out (which
reduces the width of the data bus) and by reducing the number of transistors used to build the processor.
The consequences of these cost savings are that instructions are often implemented using slower
techniques and there may not be any performance enhancers such as branch prediction or caches
(or even multiple and divide instructions, which have to be emulated in software). Some vendors
offer a range of different processors, others a range of options within a single family, using the
same instruction set (i.e., the price of an Intel i960 can vary by an order of magnitude, along with
significant differentiation in its performance, packaging, and level of integration). The total market
size is measured in billions of processors per year (see Figure 0.4).

• Digital Signal Processors (DSP). As the name suggests, these processors are designed for manipulatingDSP
processors

digital signals— for instance, decoding MPEG data streams, sending/receiving data via phone lines,
and digital filtering types of applications. These processors are specialized to perform this particular
kind of application very well; it is not intended that nondigital signal-processing applications ever
execute on them. Traditionally DSPs have been used in applications where dataflow is the dominating
factor;[44] making the provision of handcrafted library routines crucial. Recently new markets, such as
telecoms and the automobile industry have started to use DSPs in a big way, and their applications
have tended to be dominated by control flow, reducing the importance of libraries. Araújo[96] contains
an up-to-date discussion on generating machine code for DSPs. The total worldwide market in 1999
was 0.6 billion processors;[445] individual vendors expect to sell hundreds of millions of units.

20 v 1.1 January 30, 2008

5 Execution environment Introduction 0

Static frequency

D
yn

am
ic

 fr
eq

ue
nc

y

1

2

3

5 6 7 8 9 10

×Digital VAX-11

×Motorola 68020
×Nat.Semi. 32016

×Intel 80386

×Harris HCX-9

×Concurrent 3230
×IBM RT

×AT&T 3B15

×Clipper

Figure 0.5: Dynamic/static frequency of call instructions. Adapted from Davidson.[94]

• Application Specific Instruction-set Processors (ASIP). Note that the acronym ASIC is often heard, this
refers to an Application Specific Integrated Circuit— a chip that may or may not contain an instruction-
set processor. These processors are designed to execute a specific program. The general architecture of
the processor is fixed, but the systems developer gets to make some of the performance/resource usage
(transistors) trade-off decisions. These decisions can involve selecting the word length, number of
registers, and selecting between various possible instructions.[142] The cost of retargeting a translator
to such program-specific ASIPs has to be very low to make it worthwhile. Processor description driven
code generators are starting to appear,[260] which take the description used to specify the processor
characteristics and build a translator for it. While the market for ASICs exceeds $10 billion a year, the
ASIP market is relatively small (but growing).

• Number crunchers. The quest for ever-more performance has led to a variety of designs that attempt to
spread the load over more than one processor. Technical problems associated with finding sufficient
work, in existing source code (which tends to have a serial rather than parallel form) to spread over
more than one processor has limited the commercial viability of such designs. They have only proven
cost effective in certain, application-specific domains where the computations have a natural mapping
to multiple processors. The cost of the processor is often a significant percentage of the complete
computing device. The market is small and the customers are likely to be individually known to the
vendor.[16] The use of clusters of low-price processors, as used in Beowulf, could see the demise of
processors specifically designed for this market.[39]

There are differences in processor characteristics within the domains just described. Processor design evolves
over time and different vendors make different choices about the best way to use available resources (on chip
transistors). For a detailed analysis of the issues involved for the Sun UltraSPARC processor, see.[503]

The profile of the kinds of instructions generated for different processors can differ in both their static instruction
profile for dif-

ferent processorsand their dynamic characteristics, even within the same domain. This was shown quite dramatically by
Davidson, Rabung, and Whalley[94] who measured static and dynamic instruction frequencies for nine
different processors using the same translator (generating code for the different processors) on the same
source files (see Figure 0.5). For a comparison of RISC processor instruction counts, based on the SPEC
benchmarks, see McMahan and Lee.[288]

The following are the lessons to be learned from the later discussions on processor details:

• Source code that makes the best use of one particular processor is unlikely to make the best use of any
other processor.

• Making the best use of a particular processor requires knowledge of how it works and measurements
of the program running on it. Without the feedback provided by the measurement of dynamic program

January 30, 2008 v 1.1 21

Introduction 5 Execution environment0

Year
Pe

rf
or

m
an

ce

1

10

100

1,000

3,000

1980 1985 1990 1995 2000

•× •×
•
×

•
×

•
×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

•

×

CPU

DRAM

Figure 0.6: Relative performance of CPU against storage (DRAM), 1980==1. Adapted from Hennessy.[163]

behavior, it is almost impossible to tune a program to any host.

5.1.1 Overcoming performance bottlenecks
There continues to be a market for processors that execute programs more quickly than those currently
available. There is a commercial incentive to build higher-performance processors. Processor design has
reached the stage where simply increasing the processor clock rate does not increase rate of program
execution.[384] A processor contains a variety of units, any one of which could be the bottleneck that
prevents other units from delivering full performance. Some of these bottlenecks, and their solutions, can
have implications at the source code level (less than perfect branch predictions[208]) and others don’t (the
possibility of there being insufficient pins to support the data bandwidth required; pin count has only been
increasing at 16% per year[56]).

Data and instructions have to be delivered to the processor, from storage, to keep up with the rate it handles
them. Using faster memory chips to keep up with the faster processors is not usually cost effective. Figure 0.6
shows how processor performance has outstripped that of DRAM (the most common kind of storage used).
See Dietz and Mattox[100] for measurements of access times to elements of arrays of various sizes, for 13
different Intel x86 compatible processors whose clock rates ranged from 100 MHz to 1700 MHz.

A detailed analysis by Agarwal, Hrishikesh, Keckler, and Burger[3] found that delays caused by the
time taken for signals to travel through on-chip wires (12–32 cycles to travel the length of a chip using
35nm CMOS technology, clocked at 10GHz), rather than transistor switching speed, was likely to be a
major performance factor in future processors. Various methods have been proposed[317] to get around this
problem, but until such processor designs become available in commercially significant quantities they are
not considered further here.

Cachecache

A commonly used solution to the significant performance difference between a processor and its storage
is to place a small amount of faster storage, a cache, between them. Caching works because of locality of
reference. Having accessed storage location X, a program is very likely to access a location close to X in the
very near future. Research has shown[163] that even with a relatively small cache (i.e., a few thousand bytes)
it is possible to obtain significant reductions in accesses to main storage.

Modern, performance-based processors have two or more caches. A level 1 cache (called the L1 cache),
which can respond within a few clock cycles (two on the Pentium 4, four on the UltraSPARC III), but is
relatively small (8 K on the Pentium 4, 64 K on the UltraSPARC III), and a level 2 cache (called the L2 cache)
which is larger but not as quick (256 K/7 clocks on the Pentium 4). Only a few processors have further levels
of cache. Main storage is significantly larger, but its contents are likely to be more than 250 clock cycles
away.

22 v 1.1 January 30, 2008

5 Execution environment Introduction 0

Developer optimization of memory access performance is simplest when targeting processors that contain
a cache, because the hardware handles most of the details. However, there are still cases where developers
may need to manually tune memory access performance (e.g., application domains where large, sophisticated
hardware caches are too expensive, or where customers are willing to pay for their applications to execute as
fast as possible on their existing equipment). Cache behavior when a processor is executing more than one
program at the same time can be quite complex.[67, 456]

The locality of reference used by a cache applies to both instructions and data. To maximize locality of
reference, translators need to organize instructions in the order that an executing program is most likely to
need them and allocate object storage so that accesses to them always fill the cache with values that will
be needed next. Knowing which machine code sequences are most frequently executed requires execution
profiling information on a program. Obtaining this information requires effort by the developer. It is necessary
to instrument and execute a program on a representative set of data. This data, along with the original source
is used by some translators to create a program image having a better locality of reference. It is also possible
to be translator-independent by profiling and reorganizing the basic blocks contained in executable programs.
Tomiyama and Yasuura[455] used linear programming to optimize the layout of basic blocks in storage and
significantly increased the instruction cache hit rate. Running as a separate pass after translation also reduces
the need for interactive response times; the analysis took more than 10 hours on a 85 MHz microSPARC-II.

Is the use of a cache by the host processor something that developers need to take into account? Although
every effort has been made by processor vendors to maximize cache performance and translator vendors are
starting to provide the option to automatically tune the generated code based on profiling information,[160]

sometimes manual changes to the source (by developers) can make a significant difference. It is important to
remember that any changes made to the source may only make any significant changes for one particular
processor implementation. Other implementations within a processor family may share the same instruction
set but they could have different cache behaviors. Cache-related performance issues are even starting to make
it into the undergraduate teaching curriculum.[248]

A comparison by Bahar, Calder, and Grunwald[27] showed that code placement by a translator could
improve performance more than a hardware-only solution; the two combined can do even better. In some
cases the optimizations performed by a translator can affect cache behavior, for instance loop unrolling. loop unrolling

Translators that perform such optimizations are starting to become commercially available.[77] The importance
of techniques for tuning specific kinds of applications are starting to be recognized (transaction processing as
in Figure 0.8,[5] numerical computations[457]).

Specific cases of how optimizers attempt to maximize the benefits provided by a processor’s cache
are discussed in the relevant C sentences. In practice these tend to be reorganizations of the sequence of
instructions executed, not reorganizations of the data structures used. Intel[179] provides an example of how
reorganization of a data structure can improve performance on the Pentium 4:

1 struct {
2 float x, y, z, r, g, b;
3 } a_screen_3D[1000];
4 struct {
5 float x[1000], y[1000], z[1000];
6 float r[1000], g[1000], b[1000];
7 } b_screen_3D;
8 struct {
9 float x[4], y[4], z[4];

10 float r[4], g[4], b[4];
11 } c_screen_3D[250];

The structure declaration used for a_screen_3D might seem the obvious choice. However, it is likely that
operations will involve either the tuple x, y, and z, or the tuple r, g, and b. A cache line on the Pentium
4 is 64 bytes wide, so a fetch of one of the x elements will cause the corresponding r, g, and b elements
to be loaded. This is a waste of resource usage if they are not accessed. It is likely that all elements of the

January 30, 2008 v 1.1 23

Introduction 5 Execution environment0

Fetch 1 Fetch 2

Decode 1

Fetch 3

Decode 2

Execute 1

Fetch 4

Decode 3

Execute 2

Memory
access 1

Fetch 5

Decode 4

Execute 3

Memory
access 2

Write
back 1

Fetch 6

Decode 5

Execute 4

Memory
access 3

Write
back 2

time 1 time 2 time 3 time 4 time 5 time 6

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Figure 0.7: Simplified diagram of some typical stages in a processor instruction pipeline: Instruction fetch, decode, execute,
memory access, and write back.

array will be accessed in sequence and the structure declaration used for b_screen_3D makes use of this
algorithmic information. An access to an element of x will cause subsequent elements to be loaded into
the cache line, ready for the next iteration. The structure declaration, suggested by Intel, for c_screen_3D
makes use of a Pentium 4 specific characteristic; reading/writing 16 bytes from/to 16-byte aligned storage
is the most efficient way to use the storage pipeline. Intel points to a possible 10% to 20% performance
improvement through modifications that optimize cache usage; a sufficiently large improvement to warrant
using the nonobvious, possibly more complex, data structures in some competitive markets.

Dividing up storagestorage
dividing up

Many host operating systems provide the ability for programs to make use of more storage than the host
has physical memory (so-called virtual memory). This virtual memory is divided up into units called pages,
which can be swapped out of memory to disk when it is not needed.[163] There is a severe performance
penalty on accesses to data that has been swapped out to disk (i.e., some other page needs to be swapped out
and the page holding the required data items swapped back into memory from disk). Developers can organize
data accesses to try to minimize this penalty. Having translators do this automatically, or even having them
insert code into the program image to perform the swapping at points that are known to be not time-critical is
a simpler solution.[311]

Speeding up instruction execution
A variety of techniques are used to increase the number of instructions executed per second. Mostprocessor

pipeline processors are capable of executing more than one instruction at the same time. The most common technique,
and one that can affect program behavior, is instruction pipelining. Pipelining breaks instruction execution
down into a series of stages (see Figure 0.7). Having a different instruction processed by each stage at the
same time does not change the execution time of a single instruction. But it does increase the overall rate
of instruction execution because an instruction can complete at the end of every processor cycle. Many
processors break down the stages shown in Figure 0.7 even further. For instance, the Intel Pentium 4 has a
20-stage pipeline.

The presence of a pipeline can affect program execution, depending on processor behavior when an
exception is raised during instruction execution. A discussion on this issue is given elsewhere.

signal in-
terrupt

abstract ma-
chine processing Other techniques for increasing the number of instructions executed per second include: VLIW (Very Long

Instruction Word) in which multiple operations are encoded in one long instruction, and parallel execution in
which a processor contains multiple instruction execution units.[450] These techniques have no more direct

24 v 1.1 January 30, 2008

6 Measuring implementations Introduction 0

impact on program behavior than instruction pipelining. In practice translators have had difficulty finding
long sequences of instructions that can be executed in some concurrent fashion. Some help (e.g., source code
annotations) from the developer is still needed for these processors to approach peak performance.

5.2 Runtime library
An implementation’s runtime library handles those parts of a program that are not directly translated to
machine code. Calls to the functions contained in this library may occur in the source or be generated by a
translator (i.e., to some internal routine to handle arithmetic operations on values of type long long). The
runtime library may be able to perform the operation completely (e.g., the trigonometric functions) or may
need to call other functions provided by the host environment (e.g., O/S function, not C implementation
functions).

6 Measuring implementations
Although any number of different properties of an implementation might be measured, the most commonly Measuring im-

plementationsmeasured is execution time performance of the generated program image. In an attempt to limit the number program
imageof factors influencing the results, various organizations have created sets of test programs— benchmarks—

that are generally accepted within their domain. Some of these test programs are discussed below (SPEC,
the Transaction Processing council, Embedded systems, Linpack, and DSPSTONE). In some application
areas the size of the program image can be important, but there are no generally accepted benchmarks for
comparing size of program image. The growth in sales of mobile phones and other hand-held devices has
significantly increased the importance of minimizing the electrical energy consumed by a program (the energy
consumption needs of different programs performing the same function are starting to be compared[36]).

A good benchmark will both mimic the characteristics of the applications it is intended to be representative
of, and be large enough so that vendors cannot tune their products to perform well on it without also
performing well on the real applications. The extent to which the existing benchmarks reflect realistic
application usage is open to debate. Not only can different benchmarks give different results, but the same
benchmark can exhibit different behavior with different input.[105] Whatever their shortcomings may be the
existing benchmarks are considered to be the best available (they are used in almost all published research).

It has long been an accepted truism that programs spend most of their time within loops and in particular a
small number of such loops. Traditionally most processor-intensive applications, that were commercially iteration

statement
syntax

important, have been scientific or engineering based. A third kind of application domain has now become
commercially more important (in terms of hardware vendors making sales)— data-oriented applications such
as transaction processing and data mining.

Some data-oriented applications share a characteristic with scientific and engineering applications in that
a large proportion of their time is spent executing a small percentage of the code. However, it has been found
that for Online Transaction Processing (OLTP), specifically the TPC-B benchmarks, the situation is more 0 TPC-B

complicated.[374] Recent measurements of four commercial databases running on an Intel Pentium processor
showed that the processor spends 60% of its time stalled[5] (see Figure 0.8).

A distinction needs to be made between characteristics that are perceived, by developers, to make a
difference and those that actually do make a difference to the behavior of a program. Discussion within
these Common Implementation sections is concerned with constructs that have been shown, by measurement,
to make a difference to the execution time behavior of a program. Characteristics that relate to perceived
differences fall within the realm of discussions that occur in the Coding guideline sections.

The measurements given in the Common Implementation sections tend to be derived from the characteris-
tics of a program while it is being executed— dynamic measurements. The measurements given in the Usage
sections tend to be based on what appears in the source code— static measurements.

6.1 SPEC benchmarks
Processor performance based on the SPEC (Standard Performance Evaluation Corporation, http://www. SPEC

benchmarks
spec.org) benchmarks are frequently quoted by processor and implementation vendors. Academic research
on optimizers often base their performance evaluations on the programs in the SPEC suite. SPEC benchmarks

January 30, 2008 v 1.1 25

http://www.spec.org
http://www.spec.org
http://www.spec.org
http://www.spec.org

Introduction 6 Measuring implementations0

10% Sequential Range Selection

Q
ue

ry
 e

xe
cu

tio
n

tim
e

20%

40%

60%

80%

100%

A B C D

• ••
••
•

••
••

••
••

10% Indexed Range Selection

100%

B C D

••
••

••
••
•

••
••
••

Join

100%

A B C D

••
••
•

••

••
••
••

Computation Memory stalls • Branch mispredictions Resource stalls

Figure 0.8: Execution time breakdown, by four processor components (bottom of graphs) for three different application queries
(top of graphs). Adapted from Ailamaki.[5]

cover a wide range of performance evaluations: graphics, NFS, mailservers, and CPU.[102] The CPU
benchmarks are the ones frequently used for processor and translator measurements.

The SPEC CPU benchmarks are broken down into two groups, the integer and the floating-point programs;
these benchmarks have been revised over the years, the major releases being in 1989, 1992, 1995, and 2000.
A particular set of programs is usually denoted by combining the names of these components. For instance,
SPECint95 is the 1995 integer SPEC benchmark and SPECfp2000 is the 2000 floating-point benchmark.

The SPEC CPU benchmarks are based on publicly available source code (written in C for the integer
benchmarks and, predominantly, Fortran and C for the floating-point). The names of the programs are known
and versions of the source code are available on the Internet. The actual source code used by SPEC may
differ slightly because of the need to be able to build and execute identical programs on a wide range of
platforms (any changes needed to a program’s source to enable it to be built are agreed to by the SPEC
membership).

A study by Saavedra and Smith[389] investigated correlations between constructs appearing in the source
code and execution time performance of benchmarks that included SPEC.

6.2 Other benchmarks
The SPEC CPU benchmarks had their origins in the Unix market. As such they were and continue to bebenchmarks

aimed at desktop and workstation platforms. Other benchmarks that are often encountered, and the rationale
used in their design, include the following:

• DSPSTONE[469] is a DSP-oriented set of benchmarks,

• The characteristics of programs written for embedded applications are very different.[111] The EDN
Embedded Microprocessor Benchmarking Consortium (EEMBC, pronounced Embassy — http://
www.eembc.org), was formed in 1997 to develop standard performance benchmarks for the embedded
market (e.g., telecommunications, automotive, networking, consumer, and office equipment). They
currently have over 40 members and their benchmark results are starting to become known.

• MediaBench[249] is a set of benchmarks targeted at a particular kind of embedded application—
multimedia and communications. It includes programs that process data in various formats, including
JPEG, MPEG, GSM, and postscript.

26 v 1.1 January 30, 2008

http://www.eembc.org
http://www.eembc.org

7 Introduction Introduction 0

• The Olden benchmark[60] attempts to measure the performance of architectures based on a distributed Olden benchmark

memory.

• The Stanford ParalleL Applications for SHared memory (SPLASH, now in its second release as
SPLASH-2[499]), is a suite of parallel applications intended to facilitate the study of centralized and
distributed shared-address-space multiprocessors.

• The TPC-B benchmark from the Transaction Processing Performance Council (TPC). TPC-B

Ranganathan[374]
TPC-B models a banking database system that keeps track of customers’ account balances, as well as
balances per branch and teller. Each transaction updates a randomly chosen account balance, which
includes updating the balance of the branch the customer belongs to and the teller from which the
transaction is submitted. It also adds an entry to the history table which keeps a record of all submitted
transactions.

6.3 Processor measurements
Processor vendors also measure the characteristics of executing programs. Their reason is to gain insights
that will enable them to build better products, either faster versions of existing processors or new processors.
What are these measurements based on? The instructions executed by a processor are generated by translators,
which may or may not be doing their best with the source they are presented with. Translator vendors may,
or may not, have tuned their output to target processors with known characteristics. Fortunately this book
does not need to concern itself further with this problem.

Processor measurements have been used to compare different processors,[76] predict how many instructions
a processor might be able to issue at the same time,[420] and tune arithmetic operations.[275] Processor vendors
are not limited to using benchmarks or having access to source code to obtain useful information; Lee[250]

measured the instruction characteristics of several well-known Windows NT applications.

Coding Guidelines

7 Introduction
The intent of these coding guidelines is to help management minimize the cost of ownership of the source coding guidelines

introductioncode they are responsible for. The guidelines take the form of prepackaged recommendations of which
source constructs to use, or not use, when more than one option is available. These coding guidelines sit at
the bottom layer of what is potentially a complex, integrated software development environment.

Adhering to a coding guideline is an immediate cost. The discussion in these coding guidelines’ sections
is intended to help ensure that this cost payment is a wise investment yielding savings later.

The discussion in this section provides the background material for what appears in other coding guideline
sections. It is also the longest section of the book and considers the following:

• The financial aspects of software development and getting the most out of any investment in adhering
to coding guidelines.

• Selecting, adhering to, and deviating from guidelines.

• Applications and their influence on the source that needs to be written.

• Developers; bounding the limits, biases, and idiosyncrasies of their performance.

There are other Coding guideline subsections containing lengthy discussions. Whenever possible such
discussions have been integrated into the C sentence-based structure of this book (i.e., they occur in the
relevant C sentences).

The term used in this book to describe people whose jobs involve writing source code is software developer.
The term programmer tends to be associated with somebody whose only job function is to write software. A

January 30, 2008 v 1.1 27

Introduction 8 Source code cost drivers0

typist might spend almost 100% of the day typing. People do not spend all their time directly working on
source code (in most studies, the time measured on this activity rarely rises above 25%), therefore the term
programmer is not appropriate. The term software developer, usually shortened to developer, was chosen
because it is relatively neutral, but is suggestive of somebody whose primary job function involves working
with source code.

Developers often object to following coding guidelines, which are often viewed as restricting creative
freedom, or forcing them to write code in some unnatural way. Creative freedom is not something that should
be required at the source code implementation level. While particular ways of doing things may appeal to
individual developers, such usage can be counter-productive. The cost to the original developer may be small,
but the cost to subsequent developers (through requiring more effort by them to work with code written that
way) may not be so small.

8 Source code cost drivers
Having source code occupy disk space rarely costs very much. The cost of ownership for source code iscoding guidelines

cost drivers incurred when it is used. Possible uses of source code include:

• modifications to accommodate customer requests which can include fixing faults;
• major updates to create new versions of a product; and
• ports to new platforms, which can include new versions of platforms already supported.

These coding guideline subsections are applicable during initial implementation and subsequent modifications
at the source code level. They do not get involved in software design issues, to the extent that these are
programming language-independent. The following are the underlying factors behind these cost drivers:

• Developer characteristics (human factors). Developers fail to deduce the behavior of source code
constructs, either through ignorance of C or because of the limits in human information processing
(e.g., poor memory of previously read code, perception problems leading to identifiers being misread,
or information overload in short-term memory) causing faults to be introduced. These issues are dealt
with here in the Coding guideline subsections.

• Translator characteristics. A change of translator can result in a change of behavior. Changes can
include using a later version of the translator originally used, or a translator from a different vendor.
Standards are rarely set in stone and the C Standard is certainly not. Variations in implementation
behavior permitted by the standard means that the same source code can produce different results.
Even the same translator can have its behavior altered by setting different options, or by a newer
release. Differences in translator behavior are discussed in Commentary and Common Implementations
subsections. Portability to C++ and C90 translators is dealt with in their respective sections.

• Host characteristics. Just like translator behavior this can vary between releases (updates to system
libraries) and host vendors. The differences usually impact the behavior of library calls, not the
language. These issues are dealt with in Common Implementation sections.

• Application characteristics. Programs vary in the extent to which they need to concern themselves with
the host on which they execute— for instance, accessing memory ports. They can also place different
demands on language constructs— for instance, floating-point or dynamic memory allocation. These
issues are dealt with under Usage, indirectly under Common Implementations and here in CodingUsage

1
0

Guideline sections.
• Product testing. The complexity of source code can influence the number of test cases that need to

be written and executed. This complexity can be affected by design, algorithmic and source code
construct selection issues. The latter can be the subject of coding guidelines.

coding
guidelines

testability

0

Covering all possible source code issues is impossible. Frequency of occurrence is used to provide a cutoff
filter. The main purpose of the information in the Usage sections is to help provide evidence for what filteringUsage

1
0

to apply.

28 v 1.1 January 30, 2008

8 Source code cost drivers Introduction 0

8.1 Guideline cost/benefit
When a guideline is first encountered it is educational. It teaches developers about a specific problem that coding guidelines

importanceothers have encountered and that they are likely to encounter. This is a one-time learning cost (that developers
are likely to have to pay at some time in their careers). People do forget, so there may be a relearning cost.
(These oversights are the sort of thing picked up by an automated guideline enforcement tool, jogging the
developer’s memory in the process.)

Adhering to guidelines requires an investment in the form of developer’s time. Like all investments it
needs to be made on the basis that a later benefit will provide an adequate return. It is important to bear
in mind that failure to recoup the original investment is not the worst that can happen. The value of lost
opportunity through being late to market with a product can equal the entire development budget. It is
management’s responsibility to select those coding guidelines that have a return on investment applicable to 0 NPV

a particular project.
A set of guidelines can be viewed as a list of recommended coding practices, the economic cost/benefit

of which has been precalculated and found to be acceptable. This precalculation, ideally, removes the need
for developers to invest in performing their own calculations. (Even in many situations where they are not
worthwhile, the cost of performing the analysis is greater than the cost of following the guideline.)

Researchers[31, 439] are only just starting to attempt to formally investigate the trade-off involved between
the cost of creating maintainable software and the cost of maintaining software.

A study by Visaggio[481] performed a retrospective analysis of a reengineering process that had been
applied to a legacy system containing 1.5 M lines. The following is his stated aim:

Visaggio[481]1. Guidelines are provided for calculating the quality and economic scores for each component; These can be
reused in other projects, although they can and must also be continually refined with use;

2. A model for determining the thresholds on each axis is defined; the model depends on the quality and
economics policy adopted by the organization intending to renew the legacy system;

3. A decision process is included, that helps to establish which renewal process should be carried out for each
component; this process may differ for components belonging to the same quadrant and depends on the targets
the organization intends to attain with the renewal process.

8.1.1 What is the cost?
Guidelines may be more or less costly to follow (in terms of modifying, or not using, constructs once their coding guidelines

the costlack of conformance to a guideline is known). Estimating any cost change caused by having to use constructs
not prohibited by a guideline will vary from case to case. It is recognized that the costs of following a
guideline recommendation can be very high in some cases. One solution is the deviation mechanism, which
is discussed elsewhere. 0 deviations

coding guidelines

Guidelines may be more or less easy to flag reliably from a static analysis tool point of view. The quality
of static analysis tools is something that developers need to evaluate when making a purchase decision. These
coding guidelines recognize the difficulties in automating some checks by indicating that some should be
performed as part of code reviews. 0 code reviews

All guidelines are given equal weight in terms of the likelihood of not adhering to them causing a fault.
Without data correlating a guideline not being followed to the probability of the containing code causing a
fault, no other meaningful options are available.

8.1.2 What is the benefit?
What is the nature of the benefit obtained from an investment in adhering to coding guidelines? These coding coding guidelines

the benefitguidelines assume that the intended final benefit is always financial. However, the investment proposal may
not list financial benefits as the immediate reason for making it. Possible other reasons include:

• mandated by some body (e.g., regulatory authority, customer Q/A department);

January 30, 2008 v 1.1 29

Introduction 8 Source code cost drivers0

• legal reasons— companies want to show that they have used industry best practices, whatever they are,
in the event of legal action being taken against them;

• a mechanism for controlling source code: The purpose of this control may be to reduce the dependency
on a particular vendor’s implementation (portability issues), or it may be an attempt to overcome
inadequacies in developer training.

Preventing a fault from occurring is a benefit. How big is this benefit (i.e., what would the cost of the fault
have been? How is the cost of a fault measured?) Is it in terms of the cost of the impact on the end user of
experiencing the fault in the program, or is it the cost to the vendor of having to deal with it being uncovered
by their customers (which may include fixing it)? Measuring the cost to the end user is very difficult to
do, and it may involve questions that vendors would rather have left unasked. To simplify matters these
guidelines are written from the point of view of the vendor of the product containing software. The cost we
consider is the cost to fix the fault multiplied by the probability of the fault needing to be fixed (fault is found
and customer requirements demand a fix).

8.1.3 Safer software?
Coding guidelines, such as those given in this book, are often promoted as part of the package of measures tocoding guidelines

safer software be used during the development of safety-critical software.
The fact that adherence to guideline recommendations may reduce the number of faults introduced into

the source by developers is primarily an economic issue. The only difference between safety critical software
and other kinds of software is the level of confidence required that a program will behave as intended.
Achieving a higher level of confidence often involves a higher level of cost. While adherence to guideline
recommendations may reduce costs and enable more confidence level boosting tasks to be performed, for the
same total cost, management may instead choose to reduce costs and not perform any additional tasks.

Claiming that adhering to coding guidelines makes programs safer suggests that the acceptance criteria
being used are not sufficient to achieve the desired level of confidence on their own (i.e., reliance is being
placed on adherence to guideline recommendations reducing the probability of faults occurring in sections of
code that have not been fully tested).

An often-heard argument is that some language constructs are the root cause of many faults in programs
and that banning the use of these constructs leads to fewer faults. While banning the use of these constructs
may prevent them from being the root cause of faults, there is rarely any proof that the alternative constructs
used will not introduce as many faults, if not more, than the constructs they replace.

This book does not treat safety-critical as being a benefit of adherence to guideline recommendations in
its own right.

8.2 Code development’s place in the universe
Coding guidelines need to take account of the environment in which they will be applied. There are a varietydevelopment

context of reasons for creating programs. Making a profit is a common rationale and the only one considered by
these coding guidelines. Writing programs for enjoyment, by individuals, involves reasons of a personal
nature, which are not considered in this book.

A program is created by developers who will have a multitude of reasons for doing what they do. Training
and motivating these developers to align there interests with that of the organization that employs them is
outside the scope of this book, although staffing issues are discussed.

coding
guidelines

staffing

0

Programs do not exist in isolation. While all applications will want fault-free software, the importance
assigned to faults can depend on the relative importance of the software component of the total package. This
relative importance will also influence the percentage of resources assigned to software development and the
ability of the software manager to influence project time scales.

The kind of customers an organization sells to, can influence the software development process. There
are situations where effectively there is a single customer. For instance, a large organization paying for the
development of a bespoke application will invariably go through a formal requirements analysis, specification,

30 v 1.1 January 30, 2008

8 Source code cost drivers Introduction 0

design, code, test, and handover procedure. Much of the research on software development practices has been
funded by and for such development projects. Another example is software that is invisible to the end user,
but is part of a larger product. Companies and projects differ as to whether software controls the hardware or
vice versa (the hardware group then being the customer).

Most Open Source software development has a single customer, the author of the software.[141, 322] In this
case the procedures followed are likely to be completely different from those followed by paying customers.
In a few cases Open Source projects involving many developers have flourished. Several studies[304] have
investigated some of the group dynamics of such cooperative development (where the customer seems to
be the members of a core team of developers working on the project). While the impact of this form of
production on traditional economic structures is widely thought to be significant,[41] these guidelines still
treat it as a form of production, which has different cost/benefit cost drivers; whether the motivating factors
for individual developers are really any different is not discussed here.

When there are many customers, costs are recouped over many customers, who usually pay less than
the development cost of the software. In a few cases premium prices can be charged by market leaders, or
by offering substantial customer support. The process used for development is not normally visible to the
customer. Development tends to be led by marketing and is rarely structured in any meaningful formal way;
in fact too formal a process could actively get in the way of releasing new products in a timely fashion.

Research by Carmel[62] of 12 firms (five selling into the mass market, seven making narrow/direct sales)
involved in packaged software development showed that the average firm has been in business for three years,
employed 20 people, and had revenues of $1 million (1995 figures).

As pointed out by Carmel and others, time to market in a competitive environment can be crucial. Being
first to market is often a significant advantage. A vendor that is first, even with a very poorly architected,
internally, application often gets to prosper. While there may be costs to pay later, at least the company is
still in business. A later market entrant may have a wonderfully architected product that has scope for future
expansion and minimizes future maintenance costs, but without customers it has no future.

A fundamental problem facing software process improvement is how best to allocate limited resources,
to obtain optimal results. Large-scale systems undergo continuous enhancement and subcontractors may
be called in for periods of time. There are often relatively short release intervals and a fixed amount of
resources. These characteristics prohibit revolutionary changes to a system. Improvements have to be made
in an evolutionary fashion.

Coding guidelines need to be adaptable to these different development environments. Recognizing that
guideline recommendations will be adapted, it is important that information on the interrelationship between
them is made available to the manager. These interrelationships need to be taken into account when tailoring
a set of guideline recommendations.

8.3 Staffing
The culture of information technology appears to be one of high staff turnover[310] (with reported annual coding guidelines

staffingturnover rates of 25% to 35% in Fortune 500 companies).
If developers cannot be retained on a project new ones need to be recruited. There are generally more

vacancies than there are qualified developers to fill them. Hiring staff who are less qualified, either in
application-domain knowledge or programming skill, often occurs (either through a conscious decision
process or because the developer’s actual qualifications were not appreciated). The likely competence of
future development staff may need to be factored into the acceptable complexity of source code.

A regular turnover of staff creates the need for software that does not require a large investment in upfront
training costs. While developers do need to be familiar with the source they are to work on, companies
want to minimize familiarization costs for new staff while maximizing their productivity. Source code level
guideline recommendations can help reduce familiarization costs in several ways:

• Not using constructs whose behavior varies across translator implementations means that recruitment
does not have to target developers with specific implementation experience, or to factor in the cost of

January 30, 2008 v 1.1 31

Introduction 8 Source code cost drivers0

retraining— it will occur, usually through on-the-job learning.

• Minimizing source complexity helps reduce the cognitive effort required from developers trying to
comprehend it.

• Increased source code memorability can reduce the number of times developers need to reread the
same source.

• Visible source code that follows a consistent set of idioms can take advantage of people’s natural
ability to categorize and make deductions based on these categorizes.

Implementing a new project is seen, by developers, as being much more interesting and rewarding that
maintaining existing software. It is common for the members of the original software to move on to other
projects once the one they are working is initially completed. Studies by Couger and Colter[84] investigated
various approaches to motivating developers working on maintenance activities. They identified the following
two factors:

1. The motivating potential of the job, based on skill variety required, the degree to which the job requires
completion as a whole (task identity), the impact of the job on others (task significance), degree
of freedom in scheduling and performing the job, and feedback from the job (used to calculate a
Motivating Potential Score, MPS).

2. What they called an individual’s growth need strength (GNS), based on a person’s need for personal
accomplishment, to be stimulated and challenged.

The research provided support for the claim that MPS and GNS could be measured and that jobs could be
tailored, to some degree, to people. Management’s role was to organize the work that needed to be done so
as to balance the MPS of jobs against the GNS of the staff available.

It is your author’s experience that very few companies use any formally verified method for measuring
developer characteristics, or fitting their skills to the work that needs to be done. Project staffing is often
based on nothing more than staff availability and a date by which the tasks must be completed.

8.3.1 Training new staff
Developers new to a project often need to spend a significant amount of time (often months) building updeveloper

training their knowledge base of a program’s source code.[411] One solution is a training program, complete with
well-documented introductions, road maps of programs, and how they map to the application domain, all
taught by well-trained teachers. While this investment is cost effective if large numbers of people are involved,
most source code is worked on by a relatively small number of people. Also most applications evolve over
time. Keeping the material up-to-date could be difficult and costly, if not completely impractical. In short,
the cost exceeds the benefit.

In practice new staff have to learn directly from the source code. This may be supplemented by documen-
tation, provided it is reasonably up-to-date. Other experienced developers who have worked on the source
may also be available for consultation.

8.4 Return on investment
The risk of investing in the production of software is undertaken in the expectation of receiving a returnROI

that is larger than the investment. Economists have produced various models that provide an answer for the
question: “What return should I expect from investing so much money at such and such risk over a period of
time?”

Obtaining reliable estimates of the risk factors, the size of the financial investment, and the time required
is known to be very difficult. Thankfully, they are outside the scope of this book. However, given the
prevailing situation within most development groups, where nobody has had any systematic cost/benefit
analysis training, an appreciation of the factors involved can provide some useful background.

32 v 1.1 January 30, 2008

8 Source code cost drivers Introduction 0

Minimizing the total cost of a software product (e.g., balancing the initial development costs against
subsequent maintenance costs) requires that its useful life be known. The risk factors introduced by third
parties (e.g., competitive products may remove the need for continued development, customers may not
purchase the product) mean that there is the possibility that any investment made during development will
never be realized during maintenance because further work on the product never occurs.

The physical process of writing source code is considered to be so sufficiently unimportant that doubling
the effort involved is likely to have a minor impact on development costs. This is the opposite case to how
most developers view the writing process. It is not uncommon for developers to go to great lengths to reduce
the effort needed during the writing process, paying little attention to subsequent effects of their actions;
reports have even been published on the subject.[367]

8.4.1 Some economics background
Before going on to discuss some of the economic aspects of coding guidelines, we need to cover some of the NPV

basic ideas used in economics calculations. The primary quantity that is used in this book is Net Present
Value (NPV).

8.4.1.1 Discounting for time
A dollar today is worth more than a dollar tomorrow. This is because today’s dollar can be invested and start
earning interest immediately. By tomorrow it will have increased in value. The present value (PV) of a
future payoff, C, can be calculated from:

PV = discount factor×C (0.3)

where the discountfactor is less than one. It is usually represented by:

discount factor =
1

1 + r
(0.4)

where r is known as the rate of return; representing the amount of reward demanded by investors for accepting
a delayed payment. The rate of return is often called the discount rate or the opportunity cost of capital. It is
often quoted over a period of a year, and the calculation for PV over n years becomes:

PV =
C

(1 + r)n (0.5)

By expressing all future payoffs in terms of present value, it is possible to compare them on an equal footing.
Example (from Raffo[372]). A manager has the choice of spending $250,000 on the purchase of a test

tool, or the same amount of money on hiring testers. It is expected that the tool will make an immediate
cost saving of $500,000 (by automating various test procedures). Hiring the testers will result in a saving of
$750,000 in two years time. Which is the better investment (assuming a 10% discount rate)?

PV tool =
$500, 000

(1 + 0.10)0 = $500, 000 (0.6)

PV testers =
$750, 000

(1 + 0.10)2 = $619, 835 (0.7)

Based on these calculations, hiring the testers is the better option (has the greatest present value).

January 30, 2008 v 1.1 33

Introduction 8 Source code cost drivers0

8.4.1.2 Taking risk into account
The previous example did not take risk into account. What if the tool did not perform as expected, what if
some of the testers were not as productive as hoped? A more realistic calculation of present value needs to
take the risk of future payoffs not occurring as expected into account.

A risky future payoff is not worth as much as a certain future payoff. The risk is factored into the discount
rate to create an effective discount rate: k = r+ θ (where r is the risk-free rate and θ a premium that depends
on the amount of risk). The formulae for present value becomes:

PV =
C

1 + kn (0.8)

Recognizing that both r and θ can vary over time we get:

PV =
t∑

i=1

returni

1 + ki
(0.9)

where returni is the return during period i.
Example. Repeating the preceding example, but assuming a 15% risk premium for the testers option.

PV tool =
$500, 000

(1 + 0.10)0 = $500, 000 (0.10)

PV testers =
$750, 000

(1 + 0.10 + 0.15)2 = $480, 000 (0.11)

Taking this risk into account shows that buying the test tool is the better option.

8.4.1.3 Net Present Value
Future payoffs do not just occur, an investment needs to be made. A quantity called the Net Present Value
(NPV) is generally considered to lead to the better investment decisions.[52] It is calculated as:

NPV = PV − investment cost (0.12)

Example (from Raffo[372]). A coding reading initiative is expected to cost $50,000 to implement. The
expected payoff, in two years time, is $100,000. Assuming a discount rate of 10%, we get:

NPV =
$100, 000
1×102 − $50, 000 = $32, 645 (0.13)

Several alternatives to NPV, their advantages and disadvantages, are described in Chapter five of Brealey[52]

and by Raffo.[372] One commonly seen rule within rapidly changing environments is the payback rule. This
requires that the investment costs of a project be recovered within a specified period. The payback period is
the amount of time needed to recover investment costs. A shorter payback period being preferred to a longer
one.

34 v 1.1 January 30, 2008

8 Source code cost drivers Introduction 0

8.4.1.4 Estimating discount rate and risk
The formulae for calculating value are of no use unless reliable figures for the discount rate and the impact
of risk are available. The discount rate represents the risk-free element and the closest thing to a risk-free
investment is government bonds and securities. Information on these rates are freely available. Governments
face something of a circularity problem in how they calculate the discount rate for their own investments.
The US government discusses these issues in its Guidelines and Discount Rates for Benefit-Cost Analysis of
Federal Programs[489] and specifies a rate of 7%.

Analyzing risk is a much harder problem. Information on previous projects carried out within the company
can offer some guidance on the likelihood of developers meeting productivity targets. In a broader context the
market conditions also need to be taken into account, for instance: how likely is it that other companies will
bring out competing products? Will demand for the application still be there once development is complete?

One way of handling these software development risks is for companies to treat these activities in the
same way that options are used to control the risk in a portfolio of stocks. Some very sophisticated models
and formula for balancing the risks involved in holding a range of assets (e.g., stocks) have been developed.
The match is not perfect in that these methods rely on a liquid market, something that is difficult to achieve
using people (moving them to a new project requires time for them to become productive). A number of
researchers[122, 436, 496] have started to analyze some of the ways these methods might be applied to creating
and using options within the software development process.

8.5 Reusing software
It is rare for a single program to handle all the requirements of a complete application. An application is often
made up of multiple programs and generally there is a high degree of similarity in many of the requirements
for these programs. In other cases there may be variations in a hardware/software product. Writing code
tailored to each program or product combination is expensive. Reusing versions of the same code in multiple
programs sounds attractive.

In practice code reuse is a complex issue. How to identify the components that might be reusable, how
much effort should be invested in writing the original source to make it easy to reuse, how costs and benefits
should be apportioned are a few of the questions.

A survey of the economic issues involved in software reuse is provided by Wiles.[491] These coding
guidelines indirectly address code reuse in that they recommend against the use of constructs that can vary
between translator implementations.

8.6 Using another language
A solution that is sometimes proposed to get around problems in C that are seen as the root cause of many
faults is to use another language. Commonly proposed languages include Pascal, Ada, and recently Java.
These languages are claimed to have characteristics, such as strong typing, that help catch faults early and
reduce maintenance costs.

In 1987 the US Department of Defense mandated Ada (DoD Directive 3405.1) as the language in which Ada
usingbespoke applications, written for it, had to be written. The aim was to make major cost savings over the

full lifetime of a project (implementation and maintenance, throughout its operational life); the higher
costs of using Ada during implementation[377] being recovered through reduced maintenance costs over its
working lifetime.[504] However, a crucial consideration had been overlooked in the original cost analysis.
Many projects are canceled before they become operational.[117, 429] If the costs of all projects, canceled
or operational, are taken into account, Ada is not the most cost-effective option. The additional cost
incurred during development of projects that are canceled exceeds the savings made on projects that become
operational. The directive mandating the use of Ada was canceled in 1997.[468]

Proposals to use other languages sometimes have more obvious flaws in their arguments. An analysis of
why Lisp should be used[121] is based on how that language overcomes some of the C-inherent problems,
while overlooking its own more substantial weaknesses (rather like proposing that people hop on one leg as a
solution to wearing out two shoes by walking on two).

January 30, 2008 v 1.1 35

Introduction 8 Source code cost drivers0

The inability to think through a reasoned argument, where choice of programming language is concerned,
is not limited to academic papers[318] (5.3.11 Safe Subsets of Programming languages).

The use of software in applications where there is the possibility of loss of life, or serious injury, is
sometimes covered by regulations. These regulations often tend to be about process— making sure that
various checks are carried out. But sometimes subsets of the C language have been defined (sometimes called
by the name safe subsets). The associated coding guideline is that constructs outside this subset not be used.
Proof for claiming that use of these subsets result in safer programs is nonexistent. The benefit of following
coding guidelines is discussed elsewhere.

coding
guidelines

the benefit

0

8.7 Testability
This subsection is to provide some background on testing programs. The purpose of testing is to achievecoding guidelines

testability a measurable degree of confidence that a program will behave as expected. Beizer[38] provides a practical
introduction to testing.

Testing is often written about as if its purpose were to find faults in applications. Many authors quote
figures for the cost of finding a fault, looking for cost-effective ways of finding them. This outlook can lead
to an incorrectly structured development process. For instance, a perfect application will have an infinite
cost per fault found, while a very badly written application will have a very low cost per fault found. Other
figures often quoted involve the cost of finding faults in different phases of the development process. In
particular, the fact that the cost per fault is higher, the later in the process it is discovered. This observation
about relative costs often occurs purely because of how development costs are accounted for. On a significant
development effort equipment and overhead costs tend to be fixed, and there is often a preassigned number of
people working on a particular development phase. These costs are not likely to vary by much, whether there
is a single fault found or 100 faults. However, it is likely that there will be significantly fewer faults found in
later phases because most of them will have been located in earlier phases. Given the fixed costs that cannot
be decreased, and the smaller number of faults, it is inevitable that the cost per fault will be higher in later
phases.

Many of the faults that exist in source code are never encountered by users of an application. Examples
of such faults are provided in a study by Chou, Yang, Chelf, Hallem, and Engler[72] who investigated the
history of faults in the Linux kernel (found using a variety of static analysis tools). The source of different
releases of the Linux kernel is publicly available (for this analysis 21 snapshots of the source over a seven
year period were used). The results showed how faults remained in successive releases of code that was used
for production work in thousands (if not hundreds of thousands) of computers. The average fault lifetime,
before being fixed, or the code containing it ceasing to exist was 1.8 years.

The following three events need to occur for a fault to become an application failure:

1. A program needs to execute the statement containing the fault.

2. The result of that execution needs to infect the subsequent data values, another part of the program.

3. The infected data values must propagate to the output.

The probability of a particular fault affecting the output of an application for a given input can be found by
multiplying together the probability of the preceding three events occurring for that set of input values. The
following example is taken from Voas:[482]

1 #include <math.h>
2 #include <stdio.h>
3

4 void quadratic_root(int a, int b, int c)
5 /*
6 * If one exists print one integral solution of:
7 * ax^2 + bx + c = 0
8 */
9 {

36 v 1.1 January 30, 2008

8 Source code cost drivers Introduction 0

10 int d,
11 x;
12

13 if (a != 0)
14 {
15 d = (b * b) - (5 * a * c); /* Fault, should multiply by 4. */
16 if (d < 0)
17 x = 0;
18 else
19 x = (sqrt(d) / (2 * a)) - b;
20 }
21 else
22 x = -(c / b);
23

24 if ((a * x * x + b * x + c) == 0)
25 printf("%d is an integral solution\n", x);
26 else
27 printf("There is no integral solution\n");
28 }

Execution of the function quadratic_root has four possibilities:

1. The fault is not executed (e.g., quadratic_root(0, 3, 6)).

2. The fault is executed but does not infect any of the data (e.g., quadratic_root(3, 2, 0)).

3. The fault is executed and the data is infected, but it does not affect the output (e.g., quadratic_root(1,
-1, -12)).

4. The fault is executed and the infected data causes the output to be incorrect (e.g., quadratic_root(10,
0, 10)).

This program illustrates the often-seen situations of a program behaving as expected because the input values
used were not sufficient to turn a fault in the source code into an application failure during program execution.

Testing by execution examines the source code in a different way than is addressed by these coding
guidelines. One looks at only those parts of the program (in translated form) through which flow of control
passes and applies specific values, the other examines source code in symbolic form.

A study by Adams[2] looked at faults found in applications over time. The results showed (see Table 0.1)
that approximately one third of all detected faults occurred on average every 5,000 years of execution time.
Only around 2% of faults occurred every five years of execution time.

Table 0.1: Percentage of reported problems having a given mean time to first problem occurrence (in months, summed over all
installations of a product) for various products (numbered 1 to 9), e.g., 28.8% of the reported faults in product 1 were, on average,
first reported after 19,000 months of program execution time (another 34.2% of problems were first reported after 60,000 months).
From Adams.[2]

Product 19 60 190 600 1,900 6,000 19,000 60,000

1 0.7 1.2 2.1 5.0 10.3 17.8 28.8 34.2
2 0.7 1.5 3.2 4.5 9.7 18.2 28.0 34.3
3 0.4 1.4 2.8 6.5 8.7 18.0 28.5 33.7
4 0.1 0.3 2.0 4.4 11.9 18.7 28.5 34.2
5 0.7 1.4 2.9 4.4 9.4 18.4 28.5 34.2
6 0.3 0.8 2.1 5.0 11.5 20.1 28.2 32.0
7 0.6 1.4 2.7 4.5 9.9 18.5 28.5 34.0
8 1.1 1.4 2.7 6.5 11.1 18.4 27.1 31.9
9 0.0 0.5 1.9 5.6 12.8 20.4 27.6 31.2

January 30, 2008 v 1.1 37

Introduction 9 Background to these coding guidelines0

8.8 Software metrics
In a variety of engineering disciplines, it is possible to predict, to within a degree of uncertainty, variousmetrics

introduction behaviors and properties of components by measuring certain parameters and matching these measurements
against known behaviors of previous components having similar measurements. A number of software
metrics (software measurements does not sound as scientific) are based on the number of lines of source code.
Comments are usually excluded from this count. What constitutes a line is at times fiercely debated.[336] The
most commonly used count is based on a simple line count, ignoring issues such as multiple statements on
one line or statements spanning more than one line.

The results from measurements of software are an essential basis for any theoretical analysis.[126] However,
some of the questions people are trying to answer with measurements of source code have serious flaws in
their justification. Two commonly asked questions are the effort needed to implement a program (before it is
implemented) and the number of faults in a program (before it is shipped to customers). Fenton attempted to
introduce a degree of rigour into the use of metrics.[124, 125]

The COCOMO project (COnstructive COst Model, the latest release is known as COCOMO II) is aCOCOMO

research effort attempting to produce an Open Source, public domain, software cost, effort, and schedule for
developing new software development. Off-the-shelf, untuned models have been up to 600% inaccurate in
their estimates. After Bayesian tuning models that are within 30% of the actual figures 71% of the time have
been built.[73] Effort estimation is not the subject of this book and is not discussed further.

These attempts to find meaningful measures all have a common goal — the desire to predict. However,
most existing metrics are based on regression analysis models, they are not causal models. To build these
models, a number of factors believed to affect the final result are selected, and a regression analysis is
performed to calculate a correlation between them and the final results. Models built in this way will depend
on the data from which they were built and the factors chosen to correlate against. Unlike a causal model
(which predicts results based on “telling the story”,[124]) there is no underlying theory that explains how these
factors interact. For a detailed critique of existing attempts at program defect prediction based on measures
of source code and fault history, see Fenton.[124]

The one factor that existing fault-prediction models ignore is the human brain/mind. The discussion
in subsequent sections should convince the reader that source code complexity only exists in the mind of
the reader. Without taking into account the properties in the reader’s mind, it is not possible to calculate a
complexity value. For instance, one frequently referenced metric is Halstead’s software science metric, which
uses the idea of the volume of a function. This volume is calculated by counting the operators and operands
appearing in that function. There is no attempt to differentiate functions containing a few complex expressions
from functions containing many simple expressions; provided the total and unique operand/operator count is
the same, they will be assigned the same complexity.

9 Background to these coding guidelines
These coding guidelines are conventional, if a little longer than most, in the sense that they contain the usualcoding guidelines

background to exhortation not to use a construct, to do things a particular way, or to watch out for certain problems. They
are unconventional because of the following:

• An attempt has been made to consider the impact of a prohibition— do the alternatives have worse
cost/benefit?

• Deviations are suggested— experience has shown that requiring a yes/no decision on following a
guideline recommendation can result in that recommendation being ignored completely. Suggesting
deviations can lead to an increase in guideline recommendations being followed by providing a safety
valve for the awkward cases.

• Economics is the only consideration— it is sometimes claimed that following guideline recommenda-
tions imbues software with properties such as being better or safer. Your author does not know of any
way of measuring betterness in software. The case for increased safety is discussed elsewhere.

coding
guidelines

the benefit

0

38 v 1.1 January 30, 2008

9 Background to these coding guidelines Introduction 0

• An attempt has been made to base those guideline recommendations that relate to human factors on
the experimental results and theories of cognitive psychology. 0 cognitive

psychology

The wording used in these guideline recommendations is short and to the point (and hopefully unambiguous).
It does assume some degree of technical knowledge. There are several ISO standards[182, 191] dealing with
the wording used in the specification of a computer language. The principles of designing and documenting
procedures to be carried out by others are thoroughly covered by Degani and Wiener.[98]

It is all very well giving guideline recommendations for developers to follow. But, how do they do their
job. How were they selected? When do they apply? These are the issues discussed in the following sections.

9.1 Culture, knowledge, and behavior
Every language has a culture associated with its use. A culture entails thinking about and doing certain culture of C

things in a certain way.[326] How and why these choices originally came about may provide some interesting
historical context and might be discussed in other sections of this book, but they are generally not relevant to
Coding guideline sections.

Culture is perhaps too grand a word for the common existing practices of C developers. Developers are
overconfident and insular enough already without providing additional blankets to wrap themselves in. The
term existing practice is both functional and reduces the possibility of aggrandizement.

Existing practices could be thought of as a set of assumptions and expectations about how things are done
(in C). The term C style is sometimes used to describe these assumptions and expectations. However, this
term has so many different meanings, for different developers, in different contexts, that its use is very prone
to misunderstanding and argument. Therefore every effort will be made to stay away from the concept of
style in this book.

0 coding
guidelines
coding style

In many ways existing practice is a meme machine.[47] Developers read existing code, learn about the
ideas it contains, and potentially use those ideas to write new code. Particular ways of writing code need not
be useful to the program that contains them. They only need to appear to be useful to the developer who
writes the code, or fit in with a developer’s preferred way of doing things. In some cases developers do not
thoroughly analyze what code to write, they follow the lead of others. Software development has its fads and
fashions, just like any other information-driven endeavor.[46]

Before looking at the effect of existing practice on coding guidelines we ought to ask what constitutes
existing practice. As far as the guideline recommendations in this book are concerned, what constitutes
existing practice is documented in the Usage subsections. Developers are unlikely to approach this issue in
such a scientific way. They will have worked in one or more application domains, been exposed to a variety
of source code, and discussed C with a variety of other developers. While some companies might choose to
tune their guidelines to the practices that apply to specific application domains and working environments,

0 measure-
ments
5ESS

the guideline recommendations in this book attempt to be generally applicable.
Existing practices are not always documented and, in some cases, developers cannot even state what they implicit learning

are. Experienced developers sometimes use expressions such as the C way of doing things, or I feel. When
asked what is meant by these expressions, they are unable to provide a coherent answer. This kind of human
behavior (knowing something without being able to state what it is) has been duplicated in the laboratory.

• A study by Lewicki, Hill and Bizot[262] demonstrated the effect of implicit learning on subjects
expectations, even when performing a task that contained no overt learning component. In this study,
while subjects watched a computer screen a letter was presented in one of four possible locations.
Subjects had to press the button corresponding to the location of the letter as quickly as possible. The
sequence of locations used followed a consistent, but complex, pattern. The results showed subjects’
response times continually improving as they gained experience. The presentation was divided into 17
segments of 240 trials (a total of 4,080 letters), each segment was separated by a 10-second break. The
pattern used to select the sequence of locations was changed after the 15th segment (subjects were not
told about the existence of any patterns of behavior). When the pattern changed, the response times

January 30, 2008 v 1.1 39

Introduction 9 Background to these coding guidelines0

immediately got worse. After completing the presentation subjects were interviewed to find out if they
had been aware of any patterns in the presentation; they had not.

• A study by Reber and Kassin[376] compared implicit and explicit pattern detection. Subjects wereletter patterns
implicit learning asked to memorize sets of words containing the letters P, S, T, V, or X. Most of these words had been

generated using a finite state grammar. However, some of the sets contained words that had not been
generated according to the rules of this grammar. One group of subjects thought they were taking part
in a purely memory-based experiment; the other group was also told to memorize the words but was
also told of the existence of a pattern to the letter sequences and that it would help them in the task if
they could deduce this pattern. The performance of the group that had not been told about the presence
of a pattern almost exactly mirrored that of the group who had been told on all sets of words (pattern
words only, pattern plus non-pattern words, non-pattern words only). Without being told to do so,
subjects had used patterns in the words to help perform the memorization task.

• A study carried out by Berry and Broadbent[42] asked subjects to perform a task requiring decision
making using numerical quantities. In these experiments subjects were told that they were in charge
of a sugar production factory. They had to control the rate of sugar production to ensure it kept at
the target rate of 9,000 tons. The only method of control available to them was changing the size of
the workforce. Subjects were not told anything about the relationship between the current production
rate, the number of workers and previous production rates. The starting point was 600 workers and an
output rate of 6,000 tons. Subjects had to specify the number of workers they wished to employ and
were then told the new rate of production (interaction was via a terminal connected to a computer).
At the end of the experiment, subjects had to answer a questionnaire about the task they had just
performed. The results showed that although subjects had quickly learned to keep the rate of sugar
production close to the desired level, they were unable to verbalize how they achieved this goal.

The studies performed by these and other researchers demonstrate that it is possible for people to perform
quite complex tasks using knowledge that they are not consciously aware of having. By working with other
C developers and reading existing C source code, developers obtain the nonverbalized knowledge that is part
of the unwritten culture of C. This knowledge is expressed by developers having expectations and making
assumptions about software development in C.

Another consequence of being immersed within existing practice is that developers use the characteristics
of different entities to form categories. This categorization provides a mechanism for people to make
generalizations based on relatively small data sets. A developer working with C source code which has
been written by other people will slowly build up a set of assumptions and expectations of the general
characteristics of this code.

A study by Nisbett, Krantz, Jepson and Kunda[325] illustrates peoples propensity to generalize, based on
past experience. Subjects were given the following scenario. (Some were told that three samples of each
object was encountered, while other subjects were told that 20 samples of each object was encountered.)

Imagine that you are an explorer who has landed on a little-known island in the Southeastern Pacific.
You encounter several new animals, people, and objects. You observe the properties of your "samples"
and you need to make guesses about how common these properties would be in other animals, people,
or objects of the same type:

1. suppose you encounter a new bird, the shreeble. It is blue in color. What percent of all shreebles
on the island do you expect to be blue?

2. suppose the shreeble you encounter is found to nest in a eucalyptus tree, a type of tree that is fairly
common on this island. What percentage of all shreebles on the island do you expect to nest in a
eucalyptus tree?

40 v 1.1 January 30, 2008

9 Background to these coding guidelines Introduction 0

Cases in sample

Pe
rc

en
t o

f p
op

ul
at

io
n

es
tim

at
ed

 to
 h

av
e

th
e

pr
op

er
ty

40

60

80

100

1 3 20

Barratos-Obesity

Shreeble-Color
Shreeble-Nests

Floridium-Color
Floridium-Conductivity

Barratos-Color

Figure 0.9: Percentage of population estimated to have the sample property against the number of cases in the sample. Adapted
from Nisbett.[325]

3. suppose you encounter a native, who is a member of a tribe called the Barratos. He is obese. What
percentage of the male Barratos do you expect to be obese?

4. suppose the Barratos man is brown in color. What percentage of male Barratos do you expect be
brown (as opposed to red, yellow, black, or white)?

5. suppose you encounter what the physicist on your expedition describes as an extremely rare
element called floridium. Upon being heated to a very high temperature, it burns with a green
flame. What percentage of all samples of floridium found on the island do you expect to burn
with a green flame?

6. suppose the samples of floridium, when drawn into a filament, is found to conduct electricity. What
percentage of all samples of floridium found on the island do you expect to conduct electricity?

The results show that subjects used their knowledge of the variability of properties in estimating the
probability that an object would have that property. For instance, different samples of the same element are
not expected to exhibit different properties, so the number of cases in a sample did not influence estimated
probabilities. However, people are known to vary in their obesity, so the estimated probabilities were much
lower for the single sample than the 20 case sample.

The lesson to be learned here is a general one concerning the functionality of objects and functions that are
considered to form a category. Individual members of a category (e.g., a source file or structure type created
by a developer) should have properties that would not be surprising to somebody who was only familiar with
a subset of the members (see Figure 0.9).

Having expectations and making assumptions (or more technically, using inductive reasoning) can be
useful in a slowly changing world (such as the one inhabited by our ancestors). They provide a framework
from which small amounts of information can be used to infer, seemingly unconnected (to an outsider),
conclusions. Is there a place for implicit expectations and assumptions in software development? A strong

January 30, 2008 v 1.1 41

Introduction 9 Background to these coding guidelines0

case can be made for saying that any thought process that is not based on explicit knowledge (which can be
stated) should not be used when writing software. In practice use of such knowledge, and inductive reasoning
based on it, appears to play an integral role in human thought processes. A guideline recommendation that
developers not use such thought processes may be difficult, if not impossible, to adhere to.

These coding guidelines don’t seek to change what appears to be innate developer (human) behavior.
The approach taken by these guidelines is to take account of the thought processes that developers use, and
to work within them. If developers have expectations and make assumptions, then the way to deal with
them is to find out what they are and to ensure that, where possible, source code follows them (or at least
does not exhibit behavior that differs significantly from that expected). This approach means that these
recommendations are tuned to the human way of comprehending C source code.

The issue of implicit knowledge occurs in several coding guidelines.statement
visual layout

declaration
visual layout
identifier

syntax
9.1.1 Aims and motivation

What are developers trying to do when they read and write source code? They are attempting to satisfy adeveloper
motivations variety of goals. These goals can be explicit or implicit. One contribution cognitive psychology can make is

to uncover the implicit goals, and perhaps to provide a way of understanding their effects (with the aim of
creating guideline recommendations that minimize any undesirable consequences). Possible developer aims
and motives include (roughly from higher level to lower level) the following:

• Performing their role in a development project (with an eye on promotion, for the pleasure of doing a
good job, or doing a job that pays for other interests).

• Carrying out a program-modification task.

• Extracting information from the source by explicitly choosing what to pay attention to.

• Minimizing cognitive effort; for instance, using heuristics rather than acquiring all the necessarycogni-
tive effort

0

information and using deductive logic.

• Maximizing the pleasure they get out of what they are doing.

• Belief maintenance: studies have found that people interpret evidence in ways that will maintain theirbelief main-
tenance

0

existing beliefs.

The act of reading and writing software has an immediate personal cost. It is the cognitive load on a
developer’s brain (physical effort is assumed to be small enough that it has no significant cost, noticeable to
the developer). Various studies have shown that people try to minimize cognitive effort when performing
tasks.[136] A possible consequence of minimizing this effort is that people’s actions are not always those
that would be predicted on the basis of correct completion of the task at hand. In other words, people make
mistakes because they do not invest sufficient effort to carry out a task correctly.

When attempting to solve a problem, a person’s cognitive system is assumed to make cost/accuracycost/accuracy
trade-off trade-offs. The details of how it forms an estimate of the value, cost, and risk associated with an action, and

carries out the trade-off analysis is not known. A study by Fu and Gray[136] provides a good example of the
effects of these trade-offs on the decisions made by people when performing a task. Subjects were given the
task of copying a pattern of colored blocks (on a computer-generated display). To carry out the task subjects
had to remember the color of the block to be copied and its position in the target pattern, a memory effort. A
perceptual-motor effort was introduced by graying out the various areas of the display where the colored
blocks were visible. These grayed out areas could be made temporarily visible using various combinations of
keystrokes and mouse movements. When performing the task, subjects had the choice of expending memory
effort (learning the locations of different colored blocks) or perceptual-motor effort (using keystrokes and
mouse movements to uncover different areas of the display). A subject’s total effort was equal to the sum
of the perceptual motor effort and the memory storage and recall effort. The extremes of possible effort
combinations are: (1) minimize the memory effort by remembering the color and position of a single block,
which requires the perceptual-motor effort of uncovering the grayed out area for every block, or (2) minimize

42 v 1.1 January 30, 2008

9 Background to these coding guidelines Introduction 0

perceptual effort by remembering information on as many blocks as possible (this requires uncovering fewer
grayed areas).

The subjects were split into three groups. The experiment was arranged such that one group had to expend
a low effort to uncover the grayed out areas, the second acted as a control, and the third had to expend a
high effort to uncover the grayed out areas. The results showed that the subjects who had to expend a high
perceptual-motor effort, uncovered grayed out area fewer times than the other two groups. These subjects
also spent longer looking at the areas uncovered, and moved more colored blocks between uncoverings. The
subjects faced with a high perceptual-motor effort reduced their total effort by investing in memory effort.
Another consequence of this switch of effort investment, to use of memory, was an increase in errors made.

When reading source code, developers may be faced with the same kind of decision. Having looked at and
invested effort in memorizing information about a section of source code, should they invest perceptual-motor
effort when looking at a different section of source that is affected by the previously read source to verify the
correctness of the information in their memory? A commonly encountered question is the C language type
of an object. A developer has to decide between searching for the declaration or relying on information in
memory.

A study by Schunn, Reder, Nhouyvanisvong, Richards, and Stroffolino[395] found that a subject’s degree
of familiarity with a problem was a better predictor, than retrievability of an answer, of whether subjects
would attempt to retrieve or calculate the answer to a problem.

The issue of cognitive effort vs. accuracy in decision making is also discussed elsewhere. 0 effort vs.
accuracy
decision making

Experience shows that many developers believe that code efficiency is an important attribute of code
quality. This belief is not unique to the culture of C and has a long history.[235] While efficiency remains an
issue in some application domains, these coding guidelines often treat efficiency as a cause of undesirable
developer behavior that needs to be considered (with a view handling the possible consequences).

Experience has shown that some developers equate visual compactness of source code with runtime visually com-
pact code

efficiency beliefefficiency of the translated program. While there are some languages where such a correlation exists (e.g.,
some implementations of Basic, mostly interpreter based and seen in early hobbyist computers, perform just
in time translation of the source code), it does not exist for C. This is an issue that needs to be covered during
developer education.

Experience has also shown that when presented with a choice developer decisions are affected by their typing min-
imizationown estimates of the amount of typing they will need to perform. Typing minimization behavior can

include choosing abbreviated identifier names, using cut-and-paste to copy sections of code, using keyboard
short-cuts, and creating editor macros (which can sometimes require significantly more effort than they save).

9.2 Selecting guideline recommendations
No attempt has been made to keep the number of guideline recommendations within a prescribed limit. It is guideline rec-

ommendations
selectingnot expected that developers should memorize them. Managers are expected to select guidelines based on

their cost effectiveness for particular projects.
Leaving the number of guideline recommendations open-ended does not mean that any worthwhile

sounding idea has been written up as a guideline. Although the number of different coding problems that
could be encountered is infinite, an endless list of guidelines would be of little practical use. Worthwhile
recommendations are those that minimize both the likelihood of faults being introduced by a developer or
the effort needed by subsequent developers to comprehend the source code. Guideline recommendations
covering situations that rarely occur in practice are wasted effort (not for the developers who rarely get to see
them, but for the guideline author and tool vendors implementing checks for them).

These coding guidelines are not intended to recommend against the use of constructs that are obviously guidelines
not faultsfaults (i.e., developers have done something by mistake and would want to modify the code if the usage

was pointed out to them). For instance, a guideline recommending against the use of uninitialized objects is
equivalent to a guideline recommending against faults (i.e., pointless). Developers do not need to be given
recommendations not to use these constructs. Guidelines either recommend against the use of constructs that
are intentionally used (i.e., a developer did not use them by mistake) in a conforming program (any constructs

January 30, 2008 v 1.1 43

Introduction 9 Background to these coding guidelines0

that would cause a conforming translator to issue a diagnostic are not included), or they recommend that adiagnostic
shall produce

particular implementation technique be used.
These guidelines deal with the use of C language constructs, not the design decisions behind their selection.

It is not the intent to discuss how developers choose to solve the higher-level design and algorithmic issues
associated with software development. These guidelines deal with instances of particular constructs at the
source code level.

Source code faults are nearly always clichés; that is, developers tend to repeat the mistakes of others
and their own previous mistakes. Not every instance of a specific construct recommended against by a
guideline (e.g., an assignment operator in a conditional expression, if (x = y)) need result in a fault.
However, because a sufficient number of instances have caused faults to occur in the past, it is considered to
be worthwhile recommending against all usage of a construct.

Guidelines covering a particular construct cannot be considered in isolation from the rest of the language.
The question has to be asked, of each guideline: “if developers are not allowed do this, what are they going
to do instead?” A guideline that effectively forces developers into using an even more dangerous construct
is a lot more than simply a waste of time. For instance, your authors experience is that placing too many
restrictions on how enumerated constants are defined leads to developers using macro names instead— a
counterproductive outcome.

Selecting guideline recommendations based on the preceding criteria requires both a detailed inventory of
software faults for the C language (no distinction is made between faults that are detected in the source and
faults that are detected as incorrect output from a program) and some measure of developer comprehension
effort. Developer comprehension is discussed elsewhere. There have been relatively few reliable studies ofdeveloper

program com-
prehension

0

software faults (Knuth’s[228] log of faults in TEX is one such; see Fredericks[134] for a survey). Some of those
that have been published have looked at faults that occur during initial development,[452] and faults that occur
during the evolution of an application, its maintenance period.[161, 346]

Guidelines that look worthy but lack empirical evidence for their cost effectiveness should be regarded with
suspicion. The field of software engineering has a poor track record for experimental research. Studies[269, 505]

have found that most published papers in software related disciplines do not include any experimental
validation. Whenever possible this book quotes results based on empirical studies (for the measurements
by the author, either the raw data or the source code of the programs that generated the data are available
from the author[506]). Sometimes results from theoretical derivations are used. As a last resort, common
practices and experience are sometimes quoted. Those studies that have investigated issues relating to coding
practices have often used very inexperienced subjects (students studying at a university). The results of these
inexperienced subject-based studies have been ignored.experimental

studies
0

Table 0.2: Fault categories ordered by frequency of occurrence. The last column is the rank position after the fault fix weighting
factor is taken into account. Based on Perry.[346]

Rank Fault Description % Total
Faults

Fix
Rank

Rank Fault Description % Total
Faults

Fix
Rank

1 internal functionality 25.0 13 12 error handling 3.3 6
2 interface complexity 11.4 10 13 primitive’s misuse 2.4 11
3 unexpected dependencies 8.0 4 14 dynamic data use 2.1 15
4 low-level logic 7.9 17 15 resource allocation 1.5 2
5 design/code complexity 7.7 3 16 static data design 1.0 19
6 other 5.8 12 17 performance 0.9 1
7 change coordinates 4.9 14 18 unknown interactions 0.7 5
8 concurrent work 4.4 9 19 primitives unsupported 0.6 19
9 race conditions 4.3 7 20 IPC rule violated 0.4 16

10 external functionality 3.6 8 21 change management
complexity

0.3 21

11 language pitfalls i.e., use
of = when == intended

3.5 18 22 dynamic data design 0.3 21

44 v 1.1 January 30, 2008

9 Background to these coding guidelines Introduction 0

• A study by Thayer, Lipow, and Nelson[452] looked at several Jovial (a Fortran-like language) projects
during their testing phase. It was advanced for its time, using tools to analyze the source and being
rigorous in the methodology of its detailed measurements. The study broke new ground: “Based on
error histories seen in the data, define sets of error categories, both causative and symptomatic, to be
applied in the analysis of software problem reports and their closure.” Unfortunately, the quality of this
work was not followed up by others and the level of detail provided is not sufficient for our needs here.

• Hatton[161] provides an extensive list of faults in C source code found by a static analysis tool. The
tool used was an earlier version of one of the tools used to gather the usage information for this book. 0 Usage

1

• Perry[346] looked at the modification requests for a 1 MLOC system that contained approximately
15% to 20% new code for each release. As well as counting the number of occurrences of each fault
category, a weight was given to the effort required to fix them.

Table 0.3: Underlying cause of faults. The none given category occurs because sometimes both the fault and the
underlying cause are the same. For instance, language pitfalls, or low-level logic. Based on Perry.[346]

Rank Cause Description % Total
Causes

Fix
Rank

1 Incomplete/omitted design 25.2 3
2 None given 20.5 10
3 Lack of knowledge 17.8 8
4 Ambiguous design 9.8 9
5 Earlier incorrect fix 7.3 7
6 Submitted under duress 6.8 6
7 Incomplete/omitted requirements 5.4 2
8 Other 4.1 4
9 Ambiguous requirements 2.0 1

10 Incorrect modifications 1.1 5

Looking at the results (shown in Table 0.2) we see that although performance is ranked 17th in terms of
number of occurrences, it moves up to first when effort to fix is taken into account. Resource allocation
also moves up the rankings. The application measured has to operate in realtime, so performance and
resource usage will be very important. The extent to which the rankings used in this case apply to other
application domains is likely to depend on the application domain. Perry also measured the underlying
causes (see Table 0.3) and the means of fault prevention (see Table 0.4).

Table 0.4: Means of fault prevention. The last column is the rank position after the fault fix weighting factor is taken into
account. Based on Perry.[346]

Rank Means Description % Ob-
served

Fix
Rank

1 Application walk-through 24.5 8
2 Provide expert/clearer documentation 15.7 3
3 Guideline enforcement 13.3 10
4 Requirements/design templates 10.0 5
5 Better test planning 9.9 9
6 Formal requirements 8.8 2
7 Formal interface specifications 7.2 4
8 Other 6.9 6
9 Training 2.2 1

10 Keep document/code in sync 1.5 7

• A study by Glass[145] looked at what he called persistent software errors. Glass appears to make an
implicit assumption that faults appearing late in development or during operational use are somehow

January 30, 2008 v 1.1 45

Introduction 9 Background to these coding guidelines0

different from those found during development. The data came from analyzing software problem
reports from two large projects. There was no analysis of faults found in these projects during
development.

Your author knows of no study comparing differences in faults found during early development, different
phases of testing and operational use. Until proven otherwise, these Coding guideline subsections treat the
faults found during different phases of development as having the same characteristics.

More detailed information on the usage of particular C constructs is given in the Usage sections of thisUsage
1

0

book. While this information provides an estimate of the frequency-of-occurrence of these constructs, it does
not provide any information on their correlation to occurrences of faults. These frequency of occurrence
measurements were used in the decision process for deciding when particular constructs might warrant a
guideline (the extent to which frequency of occurrence might affect developer performance. Note that power
law of learning is not considered here.power law

of learning
0

The selection of these guidelines was also influenced by the intended audience of developers, the types of
programs they work on, and the priorities of the environment in which these developers work as follows:

• Developers are assumed to have imperfect memory, work in a fashion that minimizes their cognitive
load, are not experts in C language and are liable to have incorrect knowledge about what they think C
constructs mean; and have an incomplete knowledge base of the sources they are working on. Although
there may be developers who are experts in C language and the source code they are working on, it is
assumed here that such people are sufficiently rare that they are not statistically significant; in general
these Coding guideline subsections ignore them. A more detailed discussion is given elsewhere.

coding
guidelines

developers

0

• Applications are assumed to be large (over 50 KLOC) and actively worked on by more than one
developer.

coding
guidelines

applications

0

• Getting the software right is only one of the priorities in any commercial development group. Costs
and time scales need to be considered. Following coding guidelines is sometimes a small component
of what can also be a small component in a big project.

coding
guidelines

cost drivers

0

9.2.1 Guideline recommendations must be enforceable
A guideline recommendation that cannot be enforced is unlikely to be of any use. Enforcement introducesguideline rec-

ommendation
enforceable several practical issues that constrain the recommendations made by guidelines, including the following:

• Detecting violations. It needs to be possible to deduce (by analyzing source code) whether a guideline
is, or is not, being adhered to. The answer should always be the same no matter who is asking the
question (i.e., the guidelines should be unambiguous).

• Removing violations. There needs to be a way of rewriting the source so that no guideline is violated.
Creating a situation where it is not possible to write a program without violating one or other guidelines
debases the importance of adhering to guidelines and creates a work environment that encourages the
use of deviations.

• Testing modified programs. Testing can be a very expensive process. The method chosen, by developers,guideline rec-
ommendation
adherence has a
reasonable cost

to implement changes to the source may be based on minimizing the possible impact on other parts
of a program, the idea being to reduce the amount of testing that needs to be done (or at least that
appears to be needed to be done). Adhering to a guideline should involve an amount of effort that is
proportional to the effort used to make changes to the source. Guidelines that could require a major
source restructuring effort, after a small change to the source, are unlikely to be adhered to.

The procedures that might be followed in checking conformance to guidelines are not discussed in this book.
A number of standards have been published dealing with this issue.[184, 185, 193]

46 v 1.1 January 30, 2008

9 Background to these coding guidelines Introduction 0

A project that uses more than a handful of guidelines will find it uneconomical and impractical to enforce
them without some form of automated assistance. Manually checking the source code against all guidelines
is likely to be expensive and error prone (it could take a developer a working week simply to learn the
guidelines, assuming 100 rules and 20 minutes study of each rule). Recognizing that some form of automated
tool will be used, the wording for guidelines needs to be algorithmic in style.

There are situations where adhering to a guideline can get in the way of doing what needs to be done.
Adhering to coding guidelines rarely has the highest priority in a commercial environment. Experience has
shown that these situations can lead either to complete guideline recommendations being ignored, or be the
thin end of the wedge that eventually leads to the abandonment of adherence to any coding guideline. The
solution is to accept that guidelines do need to be broken at times. This fact should not be swept under the
carpet, but codified into a deviation mechanism.

9.2.1.1 Uses of adherence to guidelines
While reducing the cost of ownership may be the aim of these guideline recommendations, others may see
them as having other uses. For instance, from time to time there are calls for formal certification of source
code to some coding guideline document or other. Such certification has an obvious commercial benefit to
the certification body and any associated tools vendors. Whether such certification provides a worthwhile
benefit to purchasers of software is debatable.[486]

Goodhart’s law0.1 deals with the impact of external, human pressure on measurement and is applicable
here. One of its forms is: “When a measure becomes a target, it ceases to be a good measure.” Strathern[434]

describes how the use of a rating system changed the nature of university research and teaching.
Whether there is a greater economic benefit, to a company, in simply doing what is necessary to gain

some kind of external recognition of conformance to a coding guideline document (i.e., giving little weight
to the internal cost/benefit analysis at the source code level), or in considering adherence to guideline
recommendations as a purely internal cost/benefit issue is outside the scope of this book.

9.2.1.2 Deviations
A list of possible deviations should be an integral part of any coding guideline. This list is a continuation of deviations

coding guidelinesthe experience and calculation that forms part of every guideline.
The arguments made by the advocates of Total Quality Management[263] appear to be hard to argue

against. The relentless pursuit of quality is to be commended for some applications, such as airborne systems
and medical instruments. Even in other, less life-threatening, applications, quality is often promoted as
a significant factor in enhancing customer satisfaction. Who doesn’t want fault-free software? However,
in these quality discussions, the most important factor is often overlooked— financial and competitive
performance— (getting a product to market early, even if it contains known faults, is often much more
important than getting a fault-free product to market later). Delivering a fault-free product to market late can
result in financial ruin, just as delivering a fault prone product early to market. These coding guidelines aim
of reducing the cost of software ownership needs to be weighed against the broader aim of creating value in a
timely fashion. For instance, the cost of following a particular guideline may be much greater than normal, or
an alternative technique may not be available. In these situations a strong case can be made for not adhering
to an applicable guideline.

There is another practical reason for listing deviations. Experience shows that once a particular guideline
has not been adhered to in one situation, developers find it easier not to adhere to it in other situations.
Management rarely has access to anybody with sufficient expertise to frame a modified guideline (deviation)
appropriate to the situation, even if that route is contemplated. Experience shows that developers rarely
create a subset of an individual guideline to ignore; the entire guideline tends to be ignored. A deviation can
stop adherence to a particular guideline being an all-or-nothing decision, helping to prevent the leakage of

0.1Professor Charles Goodhart, FBA, was chief adviser to the Bank of England and his “law” was originally aimed at financial
measures (i.e., “As soon as the government attempts to regulate any particular set of financial assets, these become unreliable as
indicators of economic trends.”).

January 30, 2008 v 1.1 47

Introduction 9 Background to these coding guidelines0

nonadherence. Deviations can provide an incremental sequence (increasing in cost and benefit) of decision
points.

Who should decide when a deviation can be used? Both the authors of the source code and their immediate
managers may have a potential conflict of interest with the longer-term goals of those paying for the
development as follows:

• They may be under pressure to deliver a release and see use of a deviation as a short-cut.

• They may not be the direct beneficiaries of the investment being made in adhering to coding guidelines.
Redirecting their resources to other areas of the project may seem attractive.

• They may not have the skill or resources needed to follow a guideline in a particular case. Admitting
one’s own limitations is always hard to do.

The processes that customers (which may be other departments within the same company) put in place to
ensure that project managers and developers follow agreed-on practices are outside the scope of this book.
Methods for processing deviation requests include:

• referring all requests to an expert. This raises the question of how qualified a C expert must be to make
technical decisions on deviations.developer

expertise
0

• making deviation decisions during code review.

• allowing the Q/A department to have the final say about which deviations are acceptable.

However, permission for the use of a deviation is obtained, all uses need to be documented. That is, each
source construct that does not adhere to the full guideline, but a deviation of that guideline, needs to be
documented. This documentation may simply be a reference to one location where the rationale for that
deviation is given. Creating this documentation offers several benefits:

• It ensures that a minimum amount of thought has been given to the reasons for use of a deviation.

• It may provide useful information to subsequent developers. For instance, it can provide an indication
of the number of issues that may need to be looked at when porting to a new translator, and the rationale
given with a deviation can provide background information on coding decisions.

• It provides feedback to management on the practical implications of the guidelines in force. For
instance, is more developer training required and/or should particular guidelines be reviewed (and
perhaps reworded)?

Information given in the documentation for a deviation may need to include the following:

• The cost/benefit of following the deviation rather than the full guideline, including cost estimates.

• The risks associated with using the deviation rather than the full guideline recommendation.

• The alternative source code constructs and guidelines considered before selecting the deviation.

9.2.2 Code reviews
Some coding guidelines are not readily amenable to automatic enforcement. This can occur either becausecode reviews

they involve trade-offs among choices, or because commercial tool technology is not yet sufficiently advanced.
The solution adopted here is to structure those guidelines that are not amenable to automatic enforcement so
that they can be integrated into a code review process.

It is expected that those guideline recommendation capable of being automatically checked will have been
enforced before the code is reviewed. Looking at the output of static analysis tools during code review is

48 v 1.1 January 30, 2008

9 Background to these coding guidelines Introduction 0

usually an inefficient use of human resources. It makes sense for the developers writing the source code to
use the analysis tools regularly, not just prior to reviews.

These coding guidelines are not intended to cover all the issues that should be covered during reviews.
Problems with the specification, choice of algorithms, trade-offs in using constructs, agreement with the
specification, are among the other issues that should be considered.

The impact of code reviews goes beyond the immediate consequences of having developers read and
comment on each other’s code. Knowing that their code is to be reviewed by others can affect developer’s
decision— making strategy. Even hypothetical questions raised during a code review can change subsequent 0 justifying

decisions
decision making.[129]

Code reviews are subject to the same commercial influences as other development activities; they require
an investment of resources (a cost) to deliver benefits. Code reviews are widely seen as a good idea and are
performed by many development groups. A very common rationale given for having code reviews is that
they are a cost effective means of detecting faults. A recent review[354] questioned this assumption, based on
the lack of experimental evidence showing it to be true. Another reason for performing code reviews is the
opportunity it provides for junior developers learn the culture of a development group.

Organizations that have a formal review procedure often follow a three-stage process of preparation,
collection, and repair. During preparation, members of the review team read the source looking for as many
defects as possible. During review the team as a whole looks for additional defects and collates a list of
agreed-on defects. Repair is the resolution of these defects by the author of the source.

Studies by Porter, Siy, Mockuss, and Votta[355–357] to determine the best form for code reviews found
that: inspection interval and effectiveness of defect detection were not significantly affected by team size
(large vs. small), inspection interval and effectiveness of defect detection were not significantly affected by
the number of sessions (single vs. multiple), and the effectiveness of defect detection was not improved by
performing repairs between sessions of two-session inspections (however, inspection interval was significantly
increased). They concluded that single-session inspections by small teams were the most efficient because
their defect-detection rate was as good as other formats, and inspection interval was the same or less.

9.3 Relationship among guidelines
Individual guideline recommendations do not exist in isolation. They are collected together to form a set of coding guidelines

relationship
amongcoding guidelines. Several properties are important in a set of guideline recommendations, including:

• It must be possible to implement the algorithmic functionality required by one guideline without
violating any of the guidelines in a set.

• Consistency among guidelines within a set is a worthwhile aim.

• Being able to use the same process to enforce all requirements within a set of guidelines is a worthwhile
aim.

As a complete set, the guideline recommendations in this book do not meet all of these requirements, but it is
possible to create a number of sets that do meet them. It is management’s responsibility to select the subset
of guidelines applicable to their development situation.

9.4 How do guideline recommendations work?
How can adhering to these coding guidelines help reduce the cost of software ownership? The following are guideline rec-

ommendations
how they workpossible mechanisms:

• Reduce the number of faults introduced into source code by recommending against the use of constructs
known to have often been the cause of faults in the past. For instance, by recommending against the
use of an assignment operator in a conditional expression, if (x = y).

• Developers have different skills and backgrounds. Adhering to guidelines does not make developers
write good code, but these recommendations can help prevent them from writing code that will be
more costly than necessary to maintain.

January 30, 2008 v 1.1 49

Introduction 9 Background to these coding guidelines0

• Developers’ programming experience is often limited, so they do not always appreciate all the
implications of using constructs. Guideline recommendations provide a prebuilt knowledge net. For
instance, they highlight constructs whose behavior is not as immutable as developers might have
assumed. The most common response your author hears from developers is “Oh, I didn’t know that”.

The primary purpose of coding guidelines is not usually about helping the original author of the code
(although as a user of that code they can be of benefit to that person). Significantly more time and effort
are spent maintaining existing programs than in writing new ones. For code maintenance, being able to
easily extract information from source code, in order to predict the behavior of a program (sometimes called
program comprehension), is an important issue.

Does reducing the cognitive effort needed to comprehend source code increase the rate at which developers
comprehend it and/or reduce the number of faults they introduce into it? While there is no direct evidence
proving that it does, these coding guideline subsections assume that it does.

9.5 Developer differences
To what extent do individual developer differences affect the selection and wording of coding guidelines? Todeveloper

differences answer this question some of the things we would need to know include the following:

• the attributes that vary between developers,

• the number of developers (ideally the statistical distribution) having these different attributes and to
what extent they possess them, and

• the affect these attribute differences have on developers’ performance when working with source code.

Psychologists have been studying and measuring various human attributes for many years. These studies are
slowly leading to a general understanding of how human cognitive processes operate. Unfortunately, there is
no experimentally verified theory about the cognitive processes involved in software development. So while
a lot of information on the extent of the variation in human attributes may be known, how these differences
affect developers’ performance when working with source code is unknown.

The overview of various cognitive psychology studies, appearing later in this introduction, is not primarily
intended to deal with differences between developers. It is intended to provide a general description of the
characteristics of the mental processing capabilities of the human mind. Strengths, weaknesses, and biases in
these capabilities need to be addressed by guidelines. Sometimes the extent of individuals’ capabilities do
vary significantly in some areas. Should guidelines address the lowest common denominator (anybody could
be hired), or should they assume a minimum level of capability (job applicants need to be tested to ensure
they are above this level)?

What are the costs involved in recommending that the capabilities required to comprehend source code
not exceed some maximum value? Do these costs exceed the likely benefits? At the moment these questions
are somewhat hypothetical. There are no reliable means of measuring developers’ different capabilities,
as they relate to software development, and the impact of these capabilities on the economics of software
development is very poorly understood. Although the guideline recommendations do take account of the
capability limitations of developers, they are frustratingly nonspecific in setting boundaries.

These guidelines assume some minimum level of knowledge and programming competence on the part of
developers. They do not require any degree of expertise (the issue of expertise is discussed elsewhere).developer

expertise
0

• A study by Monaghan[307, 308] looked at measures for discriminating ability and style that are relevant
to representational and strategy differences in people’s problem solving.

• A study by Oberlander, Cox, Monaghan, Stenning, and Tobin[329] investigated student responses to
multimodal (more than one method of expression, graphical and sentences here) logic teaching. They
found that students’ preexisting cognitive styles affected both the teaching outcome and the structure
of their logical discourse.

50 v 1.1 January 30, 2008

9 Background to these coding guidelines Introduction 0

• A study by MacLeod, Hunt and Mathews[273] looked at sentence–picture comprehension. They found
one group of subjects used a comprehension strategy that fit a linguistic model, while another group
used a strategy that fit a pictorial–spatial model. A psychometric test of subjects showed a high
correlation between the model a subject used and their spatial ability (but not their verbal ability).
Sentence–picture comprehension is discussed in more detail elsewhere. In most cases C source visually

sentence-
picture rela-
tionships

appears, to readers, in a single mode, linear text. Although some tools are capable of displaying
alternative representations of the source, they are not in widespread use. The extent to which a
developer’s primary mode of thinking may affect source code comprehension in this form is unknown.

The effect of different developer personalities is discussed elsewhere, as are working memory, reading span, 0 developer
personality

0 memory
developer

reading span
rate of information processing, the affects of age, and cultural differences. Although most developers are

0 developer
computational
power

identifier
information
extraction

0 memory
ageing

0 reason-
ing ability
age-related

0 catego-
rization
cultural differ-ences

male,[92] gender differences are not discussed.

9.6 What do these guidelines apply to?
A program (at least those addressed by these Coding guidelines) is likely to be built from many source files.

coding guidelines
what applied to?

source files

Each source file is passed through eight phases of translation. Do all guidelines apply to every source file

translation
phases of

during every phase of translation? No, they do not. Guideline recommendations are created for a variety
of different reasons and the rationale for the recommendation may only be applicable in certain cases; for
instance:

• Reduce the cognitive effort needed to comprehend a program usually apply to the visible source
code. That is, the source code as viewed by a reader, for example, in an editor. The result of
preprocessing may be a more complicated expression, or sequence of nested constructs than specified preprocess-

ing
by a guideline recommendation. But, because developers are not expected to have to read the output of
the preprocessor, any complexity here may not be relevant,

• Common developer mistakes may apply during any phase of translation. The contexts should be
apparent from the wording of the guideline and the construct addressed.

• Possible changes in implementation behavior can apply during any phase of translation. The contexts
should be apparent from the wording of the guideline and the construct addressed.

• During preprocessing, the sequence of tokens output by the preprocessor can be significantly different
from the sequence of tokens (effectively the visible source) input into it. Some guideline recommenda-
tions apply to the visible source, some apply to the sequence of tokens processed during syntax and
semantic analysis, and some apply during other phases of translation.

• Different source files may be the responsibility of different development groups. As such, they may be
subject to different commercial requirements, which can affect management’s choice of guidelines
applied to them.

• The contents of system headers are considered to be opaque and outside the jurisdiction of these
guideline recommendations. They are provided as part of the implementation and the standard gives
implementations the freedom to put more or less what they like into them (they could even contain
some form of precompiled tokens, not source code). Developers are not expected to modify system header

precompiled

headers.

• Macros defined by an implementation (e.g., specified by the standard). The sequence of tokens
these macros expand to is considered to be opaque and outside the jurisdiction of these coding
guidelines. These macros could be defined in system headers (discussed previously) or internally
within the translator. They are provided by the implementation and could expand to all manner of
implementation-defined extensions, unspecified, or undefined behaviors. Because they are provided
by an implementation, the intended actual behavior is known, and the implementation supports it.
Developers can use these macros at the level of functionality specified by the standard and not concern
themselves with implementation details.

January 30, 2008 v 1.1 51

Introduction 9 Background to these coding guidelines0

Applying these reasons in the analysis of source code is something that both automated guideline enforcement
tools and code reviewers need to concern themselves with.

It is possible that different sets of guideline recommendations will need to be applied to different source
files. The reasons for this include the following:

• The cost effectiveness of particular recommendations may change during the code’s lifetime. During
initial development, the potential savings may be large. Nearer the end of the application’s useful life,
the savings achieved from implementing some recommendations may no longer be cost effective.

• The cost effectiveness of particular coding guidelines may vary between source files. Source containing
functions used by many different programs (e.g., application library functions) may need to have a
higher degree of portability, or source interfacing to hardware may need to make use of representation
information.

• The source may have been written before the introduction of these coding guidelines. It may not be
cost effective to modify the existing source to adhere to all the guidelines that apply to newly written
code.

It is management’s responsibility to make decisions regarding the cost effectiveness of applying the different
guidelines under differing circumstances.

Some applications contain automatically generated source code. Should these coding guidelines apply to
this kind of source code? The answer depends on how the generated source is subsequently used. If it is
treated as an invisible implementation detail (i.e., the fact that C is generated is irrelevant), then C guideline
recommendations do not apply (any more than assembler guidelines apply to C translators that chose to
generate assembler as an intermediate step on the way to object code). If the generated source is to be worked
on by developers, just like human-written code, then the same guidelines should be applied to it as to human
written code.

9.7 When to enforce the guidelines
Enforcing guideline recommendations as soon as possible (i.e., while developers are writing the code) hascoding guidelines

when to enforce several advantages, including:

• Providing rapid feedback has been shown[171] to play an essential role in effective learning. Having
developers check their own source provides a mechanism for them to obtain this kind of rapid feedback.

• Once code-related decisions have been made, the cost of changing them increases as time goes by and
other developers start to make use of them.

• Developers’ acceptance is increased if their mistakes are not made public (i.e., they perform the
checking on their own code as it is written).

It is developers’ responsibility to decide whether to check any modified source before using the compiler,
or only after a large number of modifications, or at some other decision point. Checking in source to a
version-control system is the point at which its adherence to guidelines stops being a private affair.

To be cost effective, the process of checking source code adherence to guideline recommendations needs to
be automated. However, the state of the art in static analysis tools has yet to reach the level of sophistication
of an experienced developer. Code reviews are the suggested mechanism for checking adherence to some
recommendations. An attempt has been made to separate out those recommendations that are probably
best checked during code review. This is not to say that these guideline recommendations should not be
automated, only that your author does not think it is practical with current, and near future, static analysis
technology.

The extent to which guidelines are automatically enforceable, using a tool, depends on the sophistication of
the analysis performed; for instance, in the following (use of uninitialized objects is not listed as a guideline
recommendation, but it makes for a simple example):

52 v 1.1 January 30, 2008

9 Background to these coding guidelines Introduction 0

1 extern int glob;
2 extern int g(void);
3

4 void f(void)
5 {
6 int loc;
7

8 if (glob == 3)
9 loc = 4;

10 if (glob == 3)
11 loc++; /* Does loc have a defined value here? */
12 if (glob == 4)
13 loc--; /* Does loc have a defined value here? */
14 if (g() == 2)
15 loc = 9;
16 if (g() == glob)
17 ++loc;
18 }

The existing value of loc is modified when certain conditions are true. Knowing that it has a defined value
requires analysis of the conditions under which the operations are performed. A static analysis tool might: (1)
mark objects having been assigned to and have no knowledge of the conditions involved; (2) mark objects as
assigned to when particular conditions hold, based on information available within the function that contains
their definition; (3) the same as (2) but based on information available from the complete program.

9.8 Other coding guidelines documents
The writing of coding guideline documents is a remarkably common activity. Publicly available documents coding guidelines

other documentsdiscussing C include,[131, 161, 176, 198, 219, 230, 284, 299, 300, 350, 351, 369, 371, 373, 425, 433] and there are significantly more
documents internally available within companies. Such guideline documents are seen as being a good
thing to have. Unfortunately, few organizations invest the effort needed to write technically meaningful or
cost-effective guidelines, they then fail to make any investment in enforcing them.0.2

The following are some of the creators of coding guideline include:

• Software development companies.[407] Your author’s experience with guideline documents written by
development companies is that at best they contain well-meaning platitudes and at worse consist of a
hodge-podge of narrow observations based on their authors’ experiences with another language.

• Organizations, user groups and consortia that are users of software.[358, 497] Here the aim is usually to
reduce costs for the organization, not software development companies. Coding guidelines are rarely
covered in any significant detail and the material usually forms a chapter of a much larger document.
Herrmann[167] provides a good review of the approaches to software safety and reliability promoted
by the transportation, aerospace, defense, nuclear power, and biomedical industries through their
published guidelines.

• National and international standards.[195] Perceived authority is an important attribute of any guide-
lines document. Several user groups and consortia are actively involved in trying to have their
documents adopted by national, if not international, standards bodies. The effort and very broad
spectrum of consensus needed for publication as an International Standard means that documents are
likely to be first adopted as National Standards.

The authors of some coding guideline documents see them as a way of making developers write good
programs (whatever they are). Your author takes the view that adherence to guidelines can only help prevent
mistakes being made and reduce subsequent costs.

0.2If your author is told about the existence of coding guidelines while visiting a company’s site, he always asks to see a copy; the
difficulty his hosts usually have in tracking down a copy is testament to the degree to which they are followed.

January 30, 2008 v 1.1 53

Introduction 9 Background to these coding guidelines0

Most guideline recommendations specify subsets, not supersets, of the language they apply to. The term
safe subset is sometimes used. Perhaps this approach is motivated by the idea that a language already has
all the constructs it needs, the desire not to invent another language, or simply an unwillingness to invest
in the tools that would be needed to handle additional constructs (e.g., adding strong typing to a weakly
typed language). The guidelines in this book have been written as part of a commentary on the C Standard.
As such, they restrict themselves to constructs in that document and do not discuss recommendations that
involve extensions.

Experience with more strongly typed languages suggests that strong typing does detect some kinds of
faults before program execution. Although experimental tool support for stronger type checking of C source
is starting to appear,[267, 319, 398] little experience in its use is available for study. This book does not specify
any guideline recommendations that require stronger type checking than that supported by the C Standard.

Quite a few coding guideline documents have been written for C++.[82, 164, 242, 292–294, 301, 335, 352, 438] It is
interesting to note that these coding guideline documents concentrate almost exclusively on the object-
oriented features of C++ (i.e., primarily those constructs not available in C). It is almost as if their authors
believe that developers using C++ will not make any of the mistakes that C developers make, despite one
language almost being a superset of the other.

Coding guideline documents for other languages include those for Ada,[80, 195] Cobol,[324] Fortran,[235]

PERL,[81] Prolog,[86] and SQL.[127]

9.8.1 Those that stand out from the crowd
The aims and methods used to produce coding guidelines documents vary. Many early guideline documents
concentrated on giving advice to developers about how to write efficient code.[235] The availability of
powerful processors, coupled with large quantities of source code, has changed the modern (since the 1980s)
emphasis to one of maintainability rather than efficiency. When efficiency is an issue, the differences between
processors and compilers makes it difficult to give general recommendations. Vendors’ reference manuals
sometimes provide useful background advice.[9, 179] The Object Defect Classification[71] covers a wide variety
of cases and has been shown to give repeatable results when used by different people.[110]

9.8.1.1 Bell Laboratories and the 5ESS
Bell Laboratories undertook a root-cause analysis of faults in the software for their 5ESS Switching Sys-measurements

5ESS tem.[502] The following were found to be the top three causes of faults, and their top two subcomponents:

1. Execution/oversight— 38%, which in turn was broken down into inadequate attention to details (75%)
and inadequate consideration to all relevant issues (11%).

2. Resource/planning— 19%, which in turn was broken down into not enough engineer time (76%) and
not enough internal support (4%).

3. Education/training— 15%, which in turn was broken down into area of technical responsibility (68%)
and programming language usage (15%).

In an attempt to reduce the number of faults, a set of “Code Fault Prevention Guidelines” and a “Coding
Fault Inspection Checklist” were written and hundreds of engineers were trained in their use. These guideline
recommendations were derived from more than 600 faults found in a particular product. As such, they could
be said to be tuned to that product (nothing was said about how different root causes might evolve over time).

Based on measurements of previous releases of the 5ESS software and engineering cost per house to
implement the guidelines (plus other bug inject countermeasures), it was estimated that for an investment of
US$100 K, a saving of US$7 M was made in product rework and testing.

One of the interesting aspects of programs is that they can contain errors in logic and yet continue to
perform their designated function; that is, faults in the source do not always show up as a perceived fault by
the user of a program. Static analysis of code provides an estimate of the number of potential faults, but not
all of these will result in reported faults.

54 v 1.1 January 30, 2008

9 Background to these coding guidelines Introduction 0

Why did the number of faults reported in the 5ESS software drop after the introduction of these guideline
recommendations? Was it because previous root causes were a good measure of future root-cause faults?

The guideline recommendations created do not involve complex constructs that required a deep knowledge
of C. They are essentially a list of mistakes made by developers who had incomplete knowledge of C. The
recommendations could be looked on as C language knowledge tuned to the reduction of faults in a particular
application program. The coding guideline authors took the approach that it is better to avoid a problem area
than expect developers to have detailed knowledge of the C language (and know how to deal with problem
areas).

In several places in the guideline document, it is pointed out that particular faults had costly consequences.
Although evidence that adherence to a particular set of coding guidelines would have prevented a costly fault
provides effective motivation for the use of those recommendations, this form of motivation (often seen in
coding guideline documents) is counter-productive when applied to individual guideline recommendations.
There is rarely any evidence to show that the reason for a particular coding error being more expensive that
another one is anything other than random chance.

9.8.1.2 MISRA
MISRA (Motor Industry Software Reliability Association, http://www.misra.org.uk) published a set of MISRA

Guidelines for the use of the C language in vehicle based software.[299, 300] These guideline recommendations
were produced by a committee of interested volunteers and have become popular in several domains outside
the automobile industry. For the most part, they are based on the implementation-defined, undefined, and
unspecified constructs listed in Annex G of the C90 Standard. The guidelines relating to issues outside this
annex are not as well thought through (the technicalities of what is intended and the impact of following a
guideline recommendation).

There are now 15 or more vendors who offer products that claim to enforce compliance to the MISRA
guidelines. At the time of this writing these tools are not always consistent in their interpretation of the
wording of the guidelines. Being based on volunteer effort, MISRA does not have the resources to produce a
test suite or provide timely responses to questions concerning the interpretation of particular guidelines.

9.8.2 Ada
Although the original purpose of the Ada language was to reduce total software ownership costs, its rigorous 0 Ada

using

type checking and handling of runtime errors subsequently made it, for many, the language of choice for
development of high-integrity systems. An ISO Technical Report[195] (a TR does not have the status of a
standard) was produced to address this market.

The rationale given in many of the Guidance clauses of this TR is that of making it possible to perform
static analysis by recommending against the use of constructs that make such analysis difficult or impossible
to perform. Human factors are not explicitly mentioned, although this could be said to be the major issue in
some of the constructs discussed. Various methods are described as not being cost effective. The TR gives
the impression that what it proposes is cost effective, although no such claim is made explicitly.

ISO/IEC TR
15942:2000

. . . , it can be seen that there are four different reasons for needing or rejecting particular language features
within this context:

1. Language rules to achieve predictability,

2. Language rules to allow modelling,

3. Language rules to facilitate testing,

4. Pragmatic considerations.

This TR also deals with the broader issues of verification techniques, code reviews, different forms of static
analysis, testing, and compiler validation. It recognizes that developers have different experience levels and
sometimes (e.g., clause 5.10.3) recommends that some constructs only be used by experienced developers
(nothing is said about how experience might be measured).

January 30, 2008 v 1.1 55

http://www.misra.org.uk

Introduction 10 Applications0

9.9 Software inspections
Software inspections, technical reviews, program walk-throughs (whatever the name used), all involve peoplesoftware in-

spections
introduction looking at source code with a view to improving it. Some of the guidelines in this book are specified for

enforcement during code reviews, primarily because automated tools have not yet achieved the sophistication
needed to handle the constructs described.

Software inspections are often touted as a cost-effective method of reducing the number of defects in
programs. However, their cost effectiveness, compared to other methods, is starting to be questioned. For a
survey of current methods and measurements, see;[240] for a detailed handbook on the subject, see.[135]

During inspections a significant amount of time is spent reading — reading requirements, design docu-Reading
inspection ments, and source code. The cost of, and likely mistakes made during, code reading are factors addressed byReading

eye movement some guideline recommendations. The following are different ways of reading source code, as it might be
applied during code reviews:

• Ad hoc reading techniques. This is a catch-all term for those cases, very common in commercial
environments, where the software is simply given to developers. No support tools or guidance is given
on how they should carry out the inspection, or what they should look for. This lack of support means
that the results are dependent on the skill, knowledge, and experience of the people at the meeting.

• Checklist reading. As its name implies this reading technique compares source code constructs against
a list of issues. These issues could be collated from faults that have occurred in the past, or published
coding guidelines such as the ones appearing in this book. Readers are required to interpret applicability
of items on the checklist against each source code construct. This approach has the advantage of giving
the reader pointers on what to look for. One disadvantage is that it constrains the reader to look for
certain kinds of problems only.

• Scenario-based reading. Like checklist reading, scenario-based reading provides custom guidance.[298]

However, as well as providing a list of questions, a scenario also provides a description on how to
perform the review. Each scenario deals with the detection of the particular defects defined in the
custom guidance. The effectiveness of scenario-based reading techniques depends on the quality of the
scenarios.

• Perspective-based reading. This form of reading checks source code from the point of view of the
customers, or consumers, of a document.[35] The rationale for this approach is that an application has
many different stakeholders, each with their own requirements. For instance, while everybody can
agree that software quality is important, reaching agreement on what the attributes of quality are can
be difficult (e.g., timely delivery, cost effective, correct, maintainable, testable). Scenarios are written,
for each perspective, listing activities and questions to ask. Experimental results on the effectiveness
of perspective-based reading of C source in a commercial environment are given by Laitenberger and
Jean-Marc DeBaud.[239]

• Defect-based reading. Here different people focus on different defect classes. A scenario, consisting
of a set of questions to ask, is created for each defect class; for instance, invalid pointer dereferences
might be a class. Questions to ask could include; Has the lifetime of the object pointed to terminated?
Could a pointer have the null pointer value in this expression? Will the result of a pointer cast be
correctly aligned?

• Function-point reading. One study[241] that compared checklist and perspective-based reading of code,
using professional developers in an industrial context, found that perspective-based reading had a
lower cost per defect found.

This book does not recommend any particular reading technique. It is hoped that the guideline recommenda-
tions given here can be integrated into whatever method is chosen by an organization.

56 v 1.1 January 30, 2008

10 Applications Introduction 0

10 Applications
Several application issues can affect the kind of guideline recommendations that are considered to be coding guidelines

applicationsapplicable. These include the application domain, the economics behind the usage, and how applications
evolve over time. These issues are discussed next.

The use of C as an intermediate language has led to support for constructs that simplify the job of
translation from other languages. Some of these constructs are specified in the standard (e.g., a trailing
comma in initializer lists), while others are provided as extensions (e.g., gcc’s support for taking the address initialization

syntax

of labels and being able to specify the register storage class on objects declared with file scope, has
influenced the decision made by some translator implementors, of other languages to generate C rather than
machine code[99]).

10.1 Impact of application domain
Does the application domain influence the characteristics of the source code? This question is important
because frequency of occurrence of constructs in source is one criterion used in selecting guidelines. There 0 Usage

1

are certainly noticeable differences in language usage between some domains; for instance:

• Floating point. Many applications make no use of any floating-point types, while some scientific and
engineering applications make heavy use of this data type.

• Large initializers. Many applications do not initialize objects with long lists of values, while the device
driver sources for the Linux kernel contain many long initializer lists.

There have been studies that looked at differences within different industries (e.g., banking, aerospace,
chemical[162]). It is not clear to what extent the applications measured were unique to those industries (e.g.,
some form of accounting applications will be common to all of them), or how representative the applications
measured might be to specific industries as a whole.

Given the problems associated with obtaining source code for the myriad of different application domains,
and the likely problems with separating out the effects of the domain from other influences, your author
decided to ignore this whole issue. A consequence of this decision is that these guideline recommendations
are a union of the possible issues that can occur across all application domains. Detailed knowledge of the
differences would be needed to build a set of guidelines that would be applicable to each application domain.
Managers working within a particular application domain may want to select guidelines applicable to that
domain.

10.2 Application economics
Coding guidelines are applicable to applications of all sizes. However, there are economic issues associated
with the visible cost of enforcing guideline recommendations. For instance, the cost of enforcement is
not likely to be visible when writing new code (the incremental cost is hidden in the cost of writing the
code). However, the visible cost of ensuring that a large body of existing, previously unchecked, code can be
significant.

The cost/benefit of adhering to a particular guideline recommendation will be affected by the economic
circumstances within which the developed application sits. These circumstances include

• short/long expected lifetime of the application,

• relative cost of updating customers,

• quantity of source code,

• acceptable probability of application failure (adherence may not affect this probability, but often plays
well in any ensuing court case), and

• expected number of future changes/updates.

January 30, 2008 v 1.1 57

Introduction 10 Applications0

There are so many possible combinations that reliable estimates of the effects of these issues, on the
applicability of particular guidelines, can only be made by those involved in managing the development
projects (the COCOMO cost-estimation model uses 17 cost factors, 5 scale factors, a domain-specific factor,COCOMO 0

and a count of the lines of code in estimating the cost of developing an application). The only direct economic
issues associated with guidelines, in this book, we discussed earlier and through the choice of applicationsdevelopment

context
0

measured.Usage
1

0

10.3 Software architecture
The term architecture is used in a variety of software development contexts.0.3 The analogy with buildings issoftware architec-

ture
often made, “firm foundations laying the base for . . . ”. This building analogy suggests a sense of direction
and stability. Some applications do have these characteristics (in particular many of those studied in early
software engineering papers, which has led to the view that most applications are like this). Many large
government and institutional applications have this form (these applications are also the source of the largest
percentage of published application development research).

To remind readers, the primary aim of these coding guidelines is to minimize the cost of software
ownership. Does having a good architecture help achieve this aim? Is it possible to frame coding guidelines
that can help in the creation of good architecture? What is a good architecture?

What constitutes good software architecture is still being hotly debated. Perhaps it is not possible to
predict in advance what the best architecture for a given application is. However, experience shows that
in practice the customer can rarely specify exactly what it is they want in advance, and applications close
to what they require are obviously not close enough (or they would not be paying for a different one to be
written). Creating a good architecture, for a given application, requires knowledge of the whole and designers
who know how to put together the parts to make the whole. In practice applications are very likely to change
frequently; it might be claimed that applications only stop changing when they stop being used. Experience
has shown that it is almost impossible to predict the future direction of application changes.

The conclusion to be drawn, for these observations, is that there are reasons other than incompetence
for applications not to have any coherent architecture (although at the level of individual source files and
functions this need not apply). In a commercial environment, profitability is a much stronger motive than the
desire for coherent software architecture.

Software architecture, in the sense of organizing components into recognizable structures, is relevant to
reading and writing source in that developers’ minds also organize the information they hold. People do not
store information in long-term memory as unconnected facts. These coding guidelines assume that havingmemory

developer
0

programs structured in a way that is compatible with how information is organized in developers’ minds, and
having the associations between components of a program correspond to how developers make associations
between items of information, will reduce the cognitive effort of reading source code. The only architecturalcatego-

rization
0

and organizational issues considered important by the guideline recommendations in this book are those
motivated by the characteristics of developers’ long-term memory storage and retrieval.

For a discussion of the pragmatics of software architecture, see Foote.[130]

10.3.1 Software evolution
Applications that continue to be used tend to be modified over time. The term software evolution is sometimesapplication

evolution used to describe this process. Coding guidelines are intended to reduce the costs associated with modifying
source. What lessons can be learned from existing applications that have evolved?

There have been several studies that looked at the change histories of some very large (several million

0.3Some developers like to refer to themselves as software architects. In the UK such usage is against the law, “ . . . punishable by a
fine not exceeding level 4 on the standard scale . . . ” (Architects Act 1997, Part IV):

Use of title “architect”.
20. – (1) A person shall not practise or carry on business under any name, style or title containing the word “architect” unless he is

a person registered under this Act.
(2) Subsection (1) does not prevent any use of the designation “naval architect”, “landscape architect” or “golf-course

architect”.

58 v 1.1 January 30, 2008

11 Developers Introduction 0

line,[137] or a hundred million[106]) programs over many years,[106, 156, 331] and significant growth over a few
years.[147] Some studies have simply looked at the types of changes and their frequency. Others have tried to
correlate faults with the changes made. None have investigated the effect of source characteristics on the
effort needed to make the changes.

The one thing that is obvious from the data published to date: Researchers are still in the early stages of
working out which factors are associated with software evolution.

• A study[95] at Bell Labs showed the efficiency gains that could be achieved using developers who
had experience with previous releases over developers new to a project. The results indicated that

0 software
development
expertise

developers who had worked on previous releases spent 20% of their time in project discovery work.
This 20% was put down as the cost of working on software that was evolving (the costs were much
higher for developers not familiar with the project).

• Another Bell Labs study[305] looked at predicting the risk of introducing a fault into an existing software
system while performing an update on it. They found that the main predictors were the number of
source lines affected, developer experience, time needed to make the change, and an attribute they
called diffusion. Diffusion was calculated from the number of subsystems, modules, and files modified
during the change, plus the number of developers involved in the work. Graves[150] also tried to predict
faults in an evolving application. He found that the fault potential of a module correlated with a
weighted sum of the contributions from all the times the module had been changed (recent changes
having the most weight). Similar findings were obtained by Ohlsson.[330, 331]

• Lehman has written a number of papers[253] on what he calls the laws of software evolution. Although
they sound plausible, these “laws” are based on empirical findings from relatively few projects.

• Kemerer and Slaughter[218] briefly review existing empirical studies and also describe the analysis of
25,000 change events in 23 commercial software systems (Cobol-based) over a 20-year period.

• Other studies have looked at the interaction of module coupling and cohesion with product evolution. coupling and
cohesion

11 Developers
The remainder of this coding guidelines subsection has two parts. This first major subsection discusses the coding guidelines

developerstasks that developers perform, the second (the following major subsection) is a review of psychology studies
carried out in human characteristics of relevance to reading and writing source code. There is an academic
research field that goes under the general title the psychology of programming; few of the research results
from this field have been used in this book for reasons explained elsewhere. However, without being able to

0 psychology
of program-
mingmake use of existing research applicable to commercial software development, your author has been forced

into taking this two-part approach; which is far from ideal. A consequence of this approach is that it is not
possible to point at direct experimental evidence for some of the recommendations made in coding guidelines.
The most that can be claimed is that there is a possible causal link between specific research results, cognitive
theories, and some software development activities.

Although these coding guidelines are aimed at a particular domain of software development, there is no 0 Usage
1

orientation toward developers having any particular kinds of mental attributes. It is hoped that this discussion 0 developer
differences

will act as a stimulus for research aimed at the needs of commercial software development, which cannot
take place unless commercial software developers are willing to give up some of their time to act as subjects
(in studies). It is hoped that this book will persuade readers of the importance of volunteering to take part in
this research.

11.1 What do developers do?
In this book, we are only interested in developer activities that involve source code. Most studies,[344] the time developers

what do they do?spent on these activities does not usually rise above 25%, of the total amount of time developers spend on all
activities. The non-source code-related activities, the other 75%, are outside the scope of this book. In this

January 30, 2008 v 1.1 59

Introduction 11 Developers0

book, the reason for reading source code is taken to be that developers want to comprehend program behavior
sufficiently well to be able to make changes to it. Reading programs to learn about software development, or
for pleasure, are not of interest here.

The source that is eventually modified may be a small subset of the source that has been read. Developers
often spend a significant amount of their time working out what needs to be modified and the impact the
changes will have on existing code.[95]

The tools used by developers to help them search and comprehend source tend to be relatively unsophisti-
cated.[410] This general lack of tool usage needs to be taken into account in that some of the tasks performed
in a manual-comprehension process will be different from those carried out in a tool-assisted process.

The following properties are taken to be important attributes of source code, because they affect developer
cognitive effort and load:cogni-

tive effort
0

cognitive load 0

• Readable. Source is both scanned, looking for some construct, and read in a booklike fashion. Thereading
kinds of

symbols appearing in the visible source need to be arranged so that they can be easily seen, recognized,
and processed.

• Comprehensible. Having read a sequence of symbols in the source, their meaning needs to be
comprehended.

• Memorable. With applications that may consist of many thousands of line of source code (100 KLOC
is common), having developers continually rereading what they have previously read because they
have forgotten the information they learned is not cost effective. Cognitive psychology has yet todeveloper

training
0

come up with a model of human memory that can be used to calculate the memorability of source
code. One practical approach might be to measure developer performance in reconstructing the source
of a translation unit (an idea initially proposed by Shneiderman,[404] who proposed a 90–10 rule—
a competent developer should be able to reconstruct functionally 90% of a translation unit after 10
minutes of study).

• Unsurprising. Developers have expectations. Meeting those expectations reduces the need to remember
special cases, and it reduces the possibility of faults caused by developers making assumptions (not
checking that their expectations are true).

For a discussion of the issues involved in collecting data on developers’ activities and some findings, see
Dewayne[345] and Bradac.[50]

11.1.1 Program understanding, not
One of the first tasks a developer has to do when given source code is figure out what it does (the worddeveloper

program com-
prehension understand is often used by developers). What exactly does it mean to understanding a program? The word

understanding can be interpreted in several different ways; it could imply

• knowing all there is to know about a program. Internally (the source code and data structures) and
externally— its execution time behavior.

• knowing the external behavior of a program (or perhaps knowing the external behavior in a particular
environment), but having a limited knowledge of the internal behavior.

• knowing the internal details, but having a limited knowledge of the external behavior.

The concept of understanding a program is often treated as being a yes/no affair. In practice, a developer
will know more than nothing and less than everything about a program. Source code can be thought of as a
web of knowledge. By reading the source, developers acquire beliefs about it; these beliefs are influenced
by their existing beliefs. Existing beliefs (many might be considered to be knowledge rather than belief, bybelief main-

tenance
0

the person holding them) can involve a programming language (the one the source is written in), general
computing algorithms, and the application domain.

60 v 1.1 January 30, 2008

11 Developers Introduction 0

When reading a piece of source code for the first time, a developer does not start with an empty set of
beliefs. Developers will have existing beliefs, which will affect the interpretation given to the source code read.
Developers learn about a program, a continuous process without a well-defined ending. This learning process
involves the creation of new beliefs and the modification of existing ones. Using a term (understanding)
that implies a yes/no answer is not appropriate. Throughout this book, the term comprehension is used, not
understanding.

Program comprehension is not an end in itself. The purpose of the investment in acquiring this knowledge
(using the definition of knowledge as “belief plus complete conviction and conclusive justification”) is for
the developer to be in a position to be able predict the behavior of a program sufficiently well to be able to
change it. Program comprehension is not so much knowledge of the source code as the ability to predict the
effects of the constructs it contains (developers do have knowledge of the source code; for instance, knowing
which source file contains a declaration).

While this book does not directly get involved in theories of how people learn, program comprehension is a
learning process. There are two main theories that attempt to explain learning. Empirical learning techniques
look for similarities and differences between positive and negative examples of a concept. Explanation-based
learning techniques operate by generalizing from a single example, proving that the example is an instance of
the concept. The proof is constructed by an inference process, making use of a domain theory, a set of facts,
and logical implications. In explanation-based learning, generalizations retain only those attributes of an
example that are necessary to prove the example is an instance of the concept. Explanation-based learning is
a general term for learning methods, such as knowledge compilation and chunking, that create new concepts
that deductively follow from existing concepts. It has been argued that a complete model of concept learning
must have both an empirical and an explanation-based component.

What strategies do developers use when trying to build beliefs about (comprehend) a program? The
theories that have been proposed can be broadly grouped into the following:

• The top-down approach. The developer gaining a top-level understanding of what the program does.
Once this is understood, the developer moves down a level to try to understanding the components
that implement the top level. This process is repeated for every component at each level until the
lowest level is reached. A developer might chose to perform a depth-first or width-first analysis of
components.

• The bottom-up approach. This starts with small sequences of statements that build a description of
what they do. These descriptions are fitted together to form higher-level descriptions, and so on, until a
complete description of the program has been built.

• The opportunistic processors approach. Here developers use both strategies, depending on which best
suits the purpose of what they are trying to achieve.[258]

There have been a few empirical studies, using experienced (in the industrial sense) subjects, of how
developers comprehend code (the purely theoretically based models are not discussed here). Including:

• A study by Letovsky[257] asked developers to talk aloud (their thoughts) as they went about the task of
adding a new feature to a program. He views developers as knowledge base understanders and builds
a much more thorough model than the one presented here.

• A study by Littman, Pinto, Letovsky and Soloway[265] found two strategies in use by the developers
(minimum of five years experience) they observed: In a systematic strategy the developers seek to
obtain information about how the program behaves before modifying it; and in an as-needed strategy
developers tried to minimize the effort needed to study the program to be modified by attempting to
localize those parts of a program where the changes needed to be made. Littman et al. found that
those developers using the systematic strategy outperformed those using the as-needed strategy for the
250-line program used in the experiment. They also noted the problems associated with attempting to
use the systematic strategy with much larger programs.

January 30, 2008 v 1.1 61

Introduction 11 Developers0

• A study by Pennington[342] investigated the differences in comprehension strategies used by developers
who achieved high and low levels of program comprehension. Those achieving high levels of com-
prehension tended to think about both the application domain and the program (source code) domain
rather than just the program domain. Pennington[343] also studied mental representations of programs;
for small programs she found that professional programmers built models based on control flow rather
than data flow.

• A study by von Mayrhauser and Vans[483, 484] looked at experienced developers maintaining large,
40,000+ LOC applications and proposed an integrated code comprehension model. This model
contained four major components, (1) program model, (2) situated model, (3) top-down model, and (4)
knowledge base.

• A study by Shaft and Vessey[397] gave professional programmer subjects source code from two different
application domains (accounting and hydrology). The subjects were familiar with one of the domains
but not the other. Some of the subjects used a different comprehension strategy for the different
domains.

11.1.1.1 Comprehension as relevance
Programming languages differ from human languages in that they are generally viewed, by developers,relevance

as a means of one-way communication with a computer. Human languages have evolved for interactive
communication between two, or more, people who share common ground.0.4

One of the reasons why developers sometimes find source code comprehension so difficult is that the
original authors did not write it in terms of a communication with another person. Consequently, many of the
implicit assumptions present in human communication may not be present in source code. Relevance is a
primary example. Sperber and Wilson[424] list the following principles of human communication:

Sperber and
Wilson[424]

Principle of relevance

1. Every act of ostensive communication communicates a presumption of its own optimal relevance.

Presumption of optimal relevance

1. The set of assumptions I which the communicator intends to make manifest to the addressee is relevant
enough to make it worth the addressee’s while to process the ostensive stimulus.

2. The ostensive stimulus is the most relevant one the communicator could have used to communicate I.

A computer simply executes the sequence of instructions contained in a program image. It has no conceptionprogram
image

of application assumptions and relevance. The developer knows this and realizes that including such
information in the code is not necessary. A common mistake made by novice developers is to assume that the
computer is aware of their intent and will perform the appropriate operations. Teaching developers to write
code such that can be comprehended by two very different addressee’s is outside the scope of these coding
guidelines.

Source code contains lots of details that are relevant to the computer, but often of little relevance to a
developer reading it. Patterns in source code can be used as indicators of relevance; recognizing these patterns
is something that developers learn with experience. These coding guidelines do not discuss the teaching of
such recognition.

Developers often talk of the intended meaning of source code, i.e., the meaning that the original author of
the code intended to convey. Code comprehension being an exercise in obtaining an intended meaning that is
assumed to exist. However, the only warranted assumption that can be made about source code is that the
operations specified in it contribute to a meaning.

0.4The study of meaning and communication between people often starts with Grice’s maxims,[151] but readers might find Sperber and
Wilson[424] easier going.

62 v 1.1 January 30, 2008

12 The new(ish) science of people Introduction 0

11.1.2 The act of writing software
The model of developers sitting down to design and then write software on paper, iterating through several
versions before deciding their work is correct, then typing it into a computer is still talked about today. This
method of working may have been necessary in the past because access to computer terminals was often
limited and developers used paper implementations as a method of optimizing the resources available to
them (time with, and without, access to a computer).

Much modern software writing is done sitting at a terminal, within an editor. Often no written, paper,
notes are used. Everything exists either in the developer’s head or on the screen in front of him (or her).
However, it is not the intent of this book to suggest alternative working practices. Changing a system that
panders to people’s needs for short-term gratification,[133] to one that delays gratification and requires more
intensive periods of a difficult, painful activity (thinking) is well beyond your author’s capabilities.

Adhering to guideline recommendation does not guarantee that high quality software will be written; it
can only help reduce the cost of ownership of the software that is written.

These coding guidelines assume that the cost of writing software is significantly less than the cost of
developer activities that occur later (testing, rereading, and modification by other developers). Adhering
to guideline may increase the cost of writing software. The purpose of this investment is to make savings
(which are greater than the costs by an amount proportional to the risk of the investment) in the cost of these 0 ROI

later activities.
It is hoped that developers will become sufficiently fluent in using these guideline recommendations and

that they will be followed automatically while entering code. A skilled developer should aim to be able to
automatically perform as much of the code-writing process as possible. Performing these tasks automatically
frees up cognitive resources for use on other problems associated with code development.

Alfred North White-
head (1861–1947)It is a profoundly erroneous truism . . . that we should cultivate the habit of thinking of what we are doing. The

precise opposite is the case. Civilization advances by extending the number of important operations which we
can perform without thinking about them.

It is not suggested that the entire software development process take place without any thinking. The process 0 developer
flow

of writing code can be compared to writing in longhand. The writer thinks of a sentence and his hand
automatically writes the words. It is only schoolchildren who need to concentrate on the actual process of
writing the words.

11.2 Productivity
Although much talked about, there has been little research on individual developer productivity. There productivity

developeris the often quoted figure of a 25-to-1 productivity difference between developers; however, this is a
misinterpretation of figures presented in two tables of a particular paper.[149] Hopefully the analysis by
Prechelt[362] will finally put a stop to researchers quoting this large, incorrect, figure. The differences in
performance found by Prechelt are rarely larger than four, similar to the performance ranges found by the
original research.

Few measurement programs based on individual developers have been undertaken; many measures are
based on complete projects, dividing some quantity (often lines of code) by the number of individuals
working on them. See Scacchi[391] for a review of the empirical software productivity research and Jones[202]

provides a good discussion of productivity over the complete life cycle of a project. However, some of the
issues discussed (e.g., response time when editing source) are rooted in a mainframe environment and are no
longer relevant.

Are there any guideline recommendations that the more productive developers use that we can all learn
from? Your author knows of no published research that investigates productivity at this level of detail.
Age-related productivity issues[272, 417] are not discussed in these coding guidelines. The subject of expertise
is discussed elsewhere. 0 expertise

January 30, 2008 v 1.1 63

Introduction 12 The new(ish) science of people0

12 The new(ish) science of people
It is likely that the formal education of this book’s readership will predominantly have been based on
the so-called hard sciences. The word hard being used in the sense of having theories backed by solid
experimental results, which are repeatable and have been repeated many times. These sciences, and many
engineering disciplines, have also been studied experimentally for a long period of time. The controversies
surrounding the basic theory, taught to undergraduates, have been worked through.

Psychology has none of those advantages. There are often unseen, complex interactions going on inside
the object being studied (people’s responses to questions and problems). Because of this, studies using
slightly different experimental situations can obtain very different results. The field is also relatively new,
and the basic theory is still being argued over. Consequently, this book cannot provide a definitive account of
the underlying theories relating to the subject of immediate interest here— reading and writing source code.

The results of studies, and theories, from psychology are starting to become more widely applied in other
fields. For instance, economists are starting to realize that people do not always make rational decisions.[403]

Researchers are also looking at the psychology of programming.
The subfield of psychology that is of most relevance to this book is cognitive psychology. The goal ofcognitive psychol-

ogy cognitive psychology is to understand the nature of human intelligence and how it works. Other subfields
include clinical psychology (understanding why certain thought malfunctions occur) and social psychology
(how people behave in groups or with other individuals).0.5

12.1 Brief history of cognitive psychology
Topics of interest to cognitive psychology were discussed by the Greeks as part of their philosophical thinking.
This connection with philosophy continued through the works of Descartes, Kant, Mill, and others. In 1879,
Wilhelm Wundt established the first psychology laboratory in Germany; this date is considered to mark
the start of psychology as an independent field. Wundt believed that the workings of the mind were open
to self-observation. The method involved introspection by trained observers under controlled conditions.
Unfortunately, different researchers obtained different results from these introspection experiments, so the
theory lost creditability.

During the 1920s, John Watson and others developed the theory known as Behaviorism. This theory was
based on the idea that psychology should be based on external behavior, not on any internal workings of the
mind. The theory is best known through its use of rats in various studies. Although widely accepted in the
US for a long time, behaviorism was not so dominant in Europe, where other theories were also developed.

Measurements on human performance were given a large boost by World War II. The introduction of
technology, such as radar, required people to operate it. Information about how people were best trained to
use complex equipment, and how they could best maintain their attention on the job at hand, was needed.

Cognitive psychology grew into its current form through work carried out between 1950 and 1970. The
inner workings of the mind were center stage again. The invention of the computer created a device, the
operation of which was seen as a potential parallel for the human mind. Information theory as a way of
processing information started to be used by psychologists. Another influence was linguistics, in particular
Noam Chomsky’s theories for analyzing the structure of language. The information-processing approach to
cognitive psychology is based on carrying out experiments that measured human performance and building
models that explained the results. It does not concern itself with actual processes within the brain, or parts of
the brain, that might perform these functions.

Since the 1970s, researchers have been trying to create theories that explain human cognition in terms
of how the brain operates. These theories are known as cognitive architectures. The availability of brain
scanners (which enable the flow of blood through the brain to be monitored, equating blood flow to activity)
in the 1990s has created the research area of cognitive neuroscience, which looks at brain structure and
processes.

0.5For a good introduction to the subject covering many of the issues discussed here, see either Cognitive Psychology: A Student’s
Handbook by Eysenck and Keane[118] or Cognitive Psychology and its Implications by Anderson.[11]

64 v 1.1 January 30, 2008

12 The new(ish) science of people Introduction 0

12.2 Evolutionary psychology
Human cognitive processes are part of the survival package that constitutes a human being. The cognitive evolutionary

psychologyprocesses we have today exist because they increased (or at least did not decrease) the likelihood of our
ancestors passing on their genes thorough offspring. Exactly what edge these cognitive processes gave our
ancestors, over those who did not possess them, is a new and growing area of research known as evolutionary
psychology. To quote one of the founders of the field:[83]

Cosmides[83]Evolutionary psychology is an approach to psychology, in which knowledge and principles from evolutionary
biology are put to use in research on the structure of the human mind. It is not an area of study, like vision,
reasoning, or social behavior. It is a way of thinking about psychology that can be applied to any topic within it.

. . . all normal human minds reliably develop a standard collection of reasoning and regulatory circuits that
are functionally specialized and, frequently, domain-specific. These circuits organize the way we interpret
our experiences, inject certain recurrent concepts and motivations into our mental life, and provide universal
frames of meaning that allow us to understand the actions and intentions of others. Beneath the level of surface
variability, all humans share certain views and assumptions about the nature of the world and human action by
virtue of these human universal reasoning circuits.

These functionally specialized circuits (the theory often goes by the name of the massive modularity
hypothesis) work together well enough to give the impression of a powerful, general purpose processor at
work. Because they are specialized to perform a given task when presented with a problem that does not
have the expected form (the use of probabilities rather than frequency counts in the conjunction fallacy) 0 conjunction

fallacy
performance is degraded (peoples behavior appears incompetent, or even irrational, if presented with a
reasoning problem). The following are the basic principles:

Cosmides[83]Principle 1. The brain is a physical system. It functions as a computer. Its circuits are designed to generate
behavior that is appropriate to your environmental circumstances.

Principle 2. Our neural circuits were designed by natural selection to solve problems that our ancestors faced
during our species’ evolutionary history.

Principle 3. Consciousness is just the tip of the iceberg; most of what goes on in your mind is hidden from you.
As a result, your conscious experience can mislead you into thinking that our circuitry is simpler than it really is.
Most problems that you experience as easy to solve are very difficult to solve— they require very complicated
neural circuitry.

Principle 4. Different neural circuits are specialized for solving different adaptive problems.

Principle 5. Our modern skulls house a stone age mind.

Although this field is very new and has yet to establish a substantial body of experimental results and theory, it
is referred to throughout these coding guidelines. The standard reference is Barkow, Cosmides, and Tooby[34]

(Mithen[302] provides a less-technical introduction).

12.3 Experimental studies
Much of the research carried out in cognitive psychology has used people between the ages of 18 and 21, experimental

studiesstudying some form of psychology degree, as their subjects. There has been discussion by psychology
researchers on the extent to which these results can be extended to the general populace.[33] However, here we
are interested in the extent to which the results obtained using such subjects is applicable to how developers
behave?

Given that people find learning to program difficult, and there is such a high failure rate for programming
courses[234] it is likely that some kind of ability factors are involved. However, because of the lack of studies
investigating this issue, it is not yet possible to know what these programming ability factors might be. There
are a large number of developers who did not study for some form of a computing degree at university, so the
fact that experimental subjects are often students taking other kinds of courses is unlikely to be an issue.

January 30, 2008 v 1.1 65

Introduction 12 The new(ish) science of people0

12.3.1 The importance of experiments
The theories put forward by the established sciences are based on experimental results. Being elegant is not
sufficient for a theory to be accepted; it has to be backed by experiments.

Software engineering abounds with theories, and elegance is often cited as an important attribute. However,
experimental results for these theories are often very thin on the ground. The computing field is evolving so
rapidly that researchers do not seem willing to invest significant amounts of their time gathering experimental
data when there is a high probability that many of the base factors will have completely changed by the time
the results are published.

Replication is another important aspect of scientific research; others should be able to duplicate the results
obtained in the original experiment. Replication of experiments within software research is relatively rare;
possible reasons include

• the pace of developments in computing means that there are often more incentives for trying new ideas
rather than repeating experiments to verify the ideas of others,

• the cost of performing an experiment can be sufficiently high that the benefit of replication is seen as
marginal, and/or

• the nature of experiments involving large-scale, commercial projects are very difficult to replicate.
Source code can be duplicated perfectly, so there is no need to rewrite the same software again.

A good practical example of the benefits of replication and the dangers of not doing any is given by Brooks.[54]

Another important issue is the statistical power of experiments.[297] Experiments that fail can be as important
as those that succeed. Nearly all published, computing-related papers describe successes. The benefits of
publishing negative results (i.e., ideas that did not work) has been proposed by Prechelt.[361] A study[416]

of 5,453 papers published in software engineering journals between 1993 and 2002 found that only 1.9%
reported controlled experiments (of which 72.6% used students only as subjects) and even then the statistical
power of these experiments fell below expected norms.[103]

12.4 The psychology of programming
Studies on the psychology of programming have taken their lead from trends in both psychology and softwarepsychology of

programming engineering. In the 1960s and 1970s, studies attempted to measure performance times for various tasks.
Since then researchers have tried to build models of how people carry out the tasks involved with various
aspects of programming.

Several theories about how developers go about the task of comprehending source code have been proposed.
There have also been specific proposals about how to reduce developer error rates, or to improve developer
performance. Unfortunately, the experimental evidence for these theories and proposals is either based
on the use of inexperienced subjects or does not include sufficient data to enable statistically significant
conclusions to be drawn. A more detailed, critical analysis of the psychological study of programming is
given by Sheil[399] (the situation does not seem to have changed since this paper was written 20 years ago).

Several studies have investigated how novices write software. This is both an area of research interest
and of practical use in a teaching environment. The subjects taking part in these studies also have the
characteristics of the population under investigation (i.e., predominantly students). However, this book is
aimed at developers who have several years experience writing code; it is not aimed at novices and it does
not teach programming skills.

Lethbridge, Sim, and Singer[256] discuss some of the techniques used to perform field studies inside
software companies.

12.4.1 Student subjects
Although cognitive psychology studies use university students as their subjects there is an important charac-
teristic they generally have, for these studies, that they don’t have for software development studies.[415] That
characteristic is experience— that is, years of practice performing the kinds of actions (e.g., reading text,

66 v 1.1 January 30, 2008

12 The new(ish) science of people Introduction 0

making decisions, creating categories, reacting to inputs) they are asked to carry out in the studies. However,
students, typically, have very little experience of writing software, perhaps 50 to 150 hours. Commercial
software developers are likely to have between 1,000 to 10,000 hours of experience. A study by Moher and
Schneider[306] compared the performance of students and professional developers in program comprehension
tasks. The results showed that experience was a significant predictor of performance level (greater than
aptitude in this study).

Reading and writing software is a learned skill. Any experiments that involve a skill-based performance
need to take into account the subjects’ skill level. The coding guidelines in this book are aimed at developers
in a commercial environment where it is expected that they will have at least two years experience in software
development.

Use of very inexperienced developers as subjects in studies means that there is often a strong learning
effect in the results. Student subjects taking part in an experiment often get better at the task because they
are learning as they perform it. Experienced developers have already acquired the skill in the task being
measured, so there is unlikely to be any significant learning during the experiment. An interesting insight
into the differences between experiments involving students and professional developers is provided by a
study performed by Basili[35] and a replication of it by Ciolkowski.[74]

A note on differences in terminology needs to be made here. Many studies in the psychology of program-
ming use the phrase expert to apply to a subject who is a third-year undergraduate or a graduate student (the
term novice being applied to first-year undergraduates). In a commercial software development environment
a recent graduate is considered to be a novice developer. Somebody with five or more years of commercial
development experience might know enough to be called an expert.

12.4.2 Other experimental issues
When an experiment is performed, it is necessary to control all variables except the one being measured. It
is also necessary to be able to perform the experiments in a reasonable amount of time. Most commercial
programs contain thousands of lines of source code. Nontrivial programs of this size can contain any number
of constructs that could affect the results of an experiment; they would also require a significant amount of
effort to read and comprehend. Many experiments use programs containing less than 100 lines of source.
In many cases, it is difficult to see how results obtained using small programs will apply to much larger
programs.

The power of the statistical methods used to analyze experimental data depends on the number of different
measurements made. If there are few measurements, the statistical significance of any claim’s results will be
small. Because of time constraints many experiments use a small number of different programs, sometimes a
single program. All that can be said for any results obtained for a single program is that the results apply to
that program; there is no evidence of generalization to any other programs.

Is the computer language used in experiments significant? The extent to which the natural language,
spoken by a person, affects their thinking has been debated since Boas, Sapir, and Whorf developed the
linguistic relativity hypothesis[268]. In this book, we are interested in C, a member of the procedural computer language

affecting thought

language family. More than 99.9% of the software ever written belongs to languages in this family. However,
almost as many experiments seem to use nonprocedural languages, as procedural ones. Whether the language
family of the experiment affects the applicability of the results to other language families is unknown.
However, it will have an effect on the degree of believability given to these results by developers working in
a commercial environment.

12.5 What question is being answered?
Many of the studies carried out by psychologists implicitly include a human language (often English) as
part of the experiment. Unless the experiments are carefully constructed, unexpected side-effects may be
encountered. These can occur because of the ambiguous nature of words in human language, or because of
subjects expectations based on their experience of the nature of human communication.

The following three subsections describe famous studies, which are often quoted in introductory cognitive
psychology textbooks. Over time, these experiments have been repeated in various, different ways and the

January 30, 2008 v 1.1 67

Introduction 12 The new(ish) science of people0

underlying assumptions made by the original researchers has been challenged. The lesson to be learned from
these studies is that it can be very difficult to interpret a subject’s answer to what appears to be a simple
question. Subjects simply may not have the intellectual machinery designed to answer the question in the
fashion it is phrased (base rate neglect), they may be answering a completely different question (conjunction
fallacy), or they may be using a completely unexpected method to solve a problem (availability heuristic).

12.5.1 Base rate neglect
Given specific evidence, possible solutions to a problem can be ordered by the degree to which they arebase rate neglect

representative of that evidence (i.e., their probability of occurring as the actual solution, based on pastrepresenta-
tive heuristic

0

experience). While these representative solutions may appear to be more likely to be correct than less-
representative solutions, for particular cases they may in fact be less likely to be the solution. Other factors,
such as the prior probability of the solution, and the reliability of the evidence can affect the probability of
any solution being correct.

A series of studies, Kahneman and Tversky[211] suggested that subjects often seriously undervalue the
importance of prior probabilities (i.e., they neglected base-rates). The following is an example from one of
these studies. Subjects were divided into two groups, with one group of subjects being presented with the
following cover story:

A panel of psychologists have interviewed and administered personality tests to 30 engineers and 70
lawyers, all successful in their respective fields. On the basis of this information, thumbnail descriptions
of the 30 engineers and 70 lawyers have been written. You will find on your forms five descriptions,
chosen at random from the 100 available descriptions. For each description, please indicate your
probability that the person described is an engineer, on a scale from 0 to 100.

and the other group of subjects presented with identical cover story, except the prior probabilities were
reversed (i.e., they were told that the personality tests had been administered to 70 engineers and 30 lawyers).
Some of the descriptions provided were designed to be compatible with the subjects’ stereotype of engineers,
others were designed to be compatible with the stereotypes of lawyers, and one description was intended to
be neutral. The following are two of the descriptions used.

Jack is a 45-year-old man. He is married and has four children. He is generally conservative, careful
and ambitious. He shows no interest in political and social issues and spends most of his free time on
his many hobbies which include home carpentry, sailing, and mathematical puzzles.

The probability that Jack is one of the 30 engineers in the sample of 100 is ____%.

Dick is a 30-year-old man. He is married with no children. A man of high ability and high motivation,
he promises to be quite successful in his field. He is well liked by his colleagues.

The probability that Dick is one of the 70 lawyers in the sample of 100 is ____%.

Following the five descriptions was this null description.

Suppose now that you are given no information whatsoever about an individual chosen at random
from the sample.

The probability that this man is one of the 30 engineers in the sample of 100 is ____%.

68 v 1.1 January 30, 2008

12 The new(ish) science of people Introduction 0

Probability of engineer (given 30)
Pr

ob
ab

ili
ty

 o
f e

ng
in

ee
r (

gi
ve

n
70

)

20

60

100

20 60 100

×

×
×

×
×

Figure 0.10: Median judged probability of subjects choosing an engineer, for five descriptions and for the null description
(unfilled circle symbol). Adapted from Kahneman.[211]

In both groups, half of the subjects were asked to evaluate, for each description, if the person described
was an engineer. The other subjects were asked the same question, except they were asked about lawyers.

The probability of a person being classified as an engineer, or lawyer, can be calculated using Bayes’
theorem. Assume that, after reading the description, the estimated probability of that person being an engineer
is P . The information that there are 30 engineers and 70 lawyers in the sample allows us to modify the
estimate, P , to obtain a more accurate estimate (using all the information available to us). The updated
probability is 0.3P/(0.3P + 0.7(1 − P)). If we are told that there are 70 engineers and 30 lawyers, the
updated probability is 0.7P/(0.7P +0.3(1−P)). For different values of the estimate P , we can plot a graph
using the two updated probabilities as the x and y coordinates. If information on the number of engineers
and lawyers is not available, or ignored, the graph is a straight line.

The results (see Figure 0.10) were closer to the straight line than the Bayesian line. The conclusion drawn
was that information on the actual number of engineers and lawyers in the sample (the base-rate) had minimal
impact on the subjective probability chosen by subjects.

Later studies[229] found that peoples behavior when making decisions that included a base-rate component
was complex. Use of base-rate information was found to depend on how problems and the given information
was framed (large between study differences in subject performance were also seen). For instance, in some
cases subjects were found to use their own experiences to judge the likelihood of certain events occurring
rather than the probabilities given to them in the studies. In some cases the ecological validity of using Bayes’
theorem to calculate the probabilities of outcomes has been questioned.

To summarize: while people have been found to ignore base-rates when making some decisions, this
behavior is far from being universally applied to all decisions.

12.5.2 The conjunction fallacy
An experiment originally performed by Tversky and Kahneman[464] presented subjects with the following conjunction fallacy

problem.

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student,
she was deeply concerned with issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations.

Please rank the following statements by their probability, using 1 for the most probable and 8 for the
least probable.

(a) Linda is a teacher in elementary school.
(b) Linda works in a bookstore and takes Yoga classes.

January 30, 2008 v 1.1 69

Introduction 12 The new(ish) science of people0

(c) Linda is active in the feminist movement.
(d) Linda is a psychiatric social worker.
(e) Linda is a member of the League of Women Voters.
(f) Linda is a bank teller.
(g) Linda is an insurance sales person.
(h) Linda is a bank teller and is active in the feminist movement.

In a group of subjects with no background in probability or statistics, 89% judged that statement (h) was
more probable than statement (f). Use of simple mathematical logic shows that Linda cannot be a feminist
bank teller unless she is also a bank teller, implying that being only a bank teller is at least as likely, if
not more so, than being both a bank teller and having some additional attribute. When the subjects were
graduate students in the decision science program of the Stanford Business School (labeled as statistically
sophisticated by the experimenters), 85% judged that statement (h) was more probable than statement (f).

These results (a compound event being judged more probable than one of its components) have been
duplicated by other researchers performing different experiments. A recent series of studies[406] went as far
as checking subjects’ understanding of the word probability and whether statement (f) might be interpreted
to mean Linda is a bank teller and not active in the feminist movement (it was not).

This pattern of reasoning has become known as the conjunction fallacy.
On the surface many of the subjects in the experiment appear to be reasoning in a nonrational way. How

can the probability of the event A and B be greater than the probability of event A? However, further studies
have found that the likelihood of obtaining different answers can be affected by how the problem is expressed.
The effects of phrasing the problem in terms of either probability or frequency were highlighted in a study by
Fiedler.[128] The original Tversky and Kahneman study wording was changed to the following:

There are 100 people who fit the description above. How many of them are:
(a) bank tellers?
(b) bank tellers and active in the feminist movement?
. . .

In this case, only 22% of subjects rated the bank teller and active in the feminist movement option as being
more frequent than the bank teller only option. When Fiedler repeated the experiment using wording identical
to the original Tversky and Kahneman experiment, 91% of subjects gave the feminist bank teller option as
more probable than the bank teller only option. A number of different explanations, for the dependence of
the conjunction fallacy on the wording of the problem, have been proposed.

Evolutionary psychologists have interpreted these results as showing that people are not very good atevolutionary
psychology

0

reasoning using probability. It is argued that, in our daily lives, events are measured in terms of their frequency
of occurrence (e.g., how many times fish were available at a particular location in the river). This event-
based measurement includes quantity, information not available when probabilities are used. Following this
argument through suggests that the human brain has become specialized to work with frequency information,
not probability information.

Hertwig and Gigerenzer[168] point out that, in the Linda problem, subjects were not informed that they wereconjunction fallacy
pragmatic inter-
pretation taking part in an exercise in probability. Subjects therefore had to interpret the instructions; in particular, what

did the experimenter mean by probability? Based on Grice’s[151] theory of conversational reasoning, theyrelevance 0

suggested that the likely interpretation given to the word probability would be along the lines of “something
which, judged by present evidence, is likely to be true, to exist, or to happen,” (one of the Oxford English
dictionary contemporary definitions of the word), not the mathematical definition of the word.

Grice’s theory was used to make the following predictions:

Hertwig[168]
70 v 1.1 January 30, 2008

12 The new(ish) science of people Introduction 0

Prediction 1: Probability judgments. If asked for probability judgments, people will infer its nonmathematical
meanings, and the proportion of conjunction violations will be high as a result.

Prediction 2: Frequency judgments. If asked for frequency judgments, people will infer mathematical meanings,
and the proportion of conjunction violations will decrease as a result.

Prediction 3: Believability judgments. If the term “probability” is replaced by “believability”, then the
proportion of conjunction violations should be about as prevalent as in the probability judgment.

A series of experiments confirmed these predictions. A small change in wording caused subjects to have a
completely different interpretation of the question.

12.5.3 Availability heuristic
How do people estimate the likelihood of an occurrence of an event? The availability heuristic argues that, in availabil-

ity heuristicmaking an estimate, people bring to mind instances of the event; the more instances brought to mind, the
more likely it is to occur. Tversky and Kahneman[462] performed several studies in an attempt to verify that
people use this heuristic to estimate probabilities. Two of the more well-known experiments follow.

The first is judgment of word frequency; here subjects are first told that.

The frequency of appearance of letters in the English language was studied. A typical text was
selected, and the relative frequency with which various letters of the alphabet appeared in the first and
third positions in words was recorded. Words of less than three letters were excluded from the count.

You will be given several letters of the alphabet, and you will be asked to judge whether these letters
appear more often in the first or in the third position, and to estimate the ratio of the frequency with
which they appear in these positions.

They were then asked the same question five times, using each of the letters (K, L, N, R, V).

Consider the letter R.
Is R more likely to appear in:

• the first position?

• the third position? (check one)

My estimate for the ratio of these two values is ___:1.

Of the 152 subjects, 105 judged the first position to be more likely (47 the third position more likely). The
median estimated ratio was 2:1.

In practice, words containing the letter R in the third position occur more frequently in texts than words
with R in the first position. This is true for all the letters— K, L, N, R, V.

The explanation given for these results was that subjects could more easily recall words beginning with
the letter R, for instance, than recall words having an R as the third letter. The answers given, being driven by
the availability of instances that popped into the subjects’ heads, not by subjects systematically counting all
the words they knew.

An alternative explanation of how subjects might have reached their conclusion was proposed by Sedlmeier,
Hertwig, and Gigerenzer.[396] First they investigated possible ways in which the availability heuristic might
operate; Was it based on availability-by-number (the number of instances that could be recalled) or availability-
by-speed (the speed with which instances can be recalled). Subjects were told (the following is an English
translation, the experiment took place in Germany and used German students) either:

January 30, 2008 v 1.1 71

Introduction 13 Categorization0

Your task is to recall as many words as you can in a certain time. At the top of the following page you
will see a letter. Write down as many words as possible that have this letter as the first (second) letter.

or,

Your task is to recall as quickly as possible one word that has a particular letter as the first (second)
letter. You will hear first the position of the letter and then the letter. From the moment you hear the
letter, try to recall a respective word and verbalize this word.

Subjects answers were used to calculate an estimate of relative word frequency based on either availability-
by-number or on availability-by-speed. These relative frequencies did not correlate with actual frequency of
occurrence of words in German. The conclusion drawn was that the availability heuristic was not an accurate
estimator of word frequency, and that it could not be used to explain the results obtained by Tversky and
Kahneman.

If subjects were not using either of these availability heuristics, what mechanism are they using? Jonides
and Jones[205] have shown, based on a large body of results, that subjects are able to judge the number of
many kinds of events in a way that reflects the actual relative frequencies of the events with some accuracy.

Sedlmeier et al.[396] proposed (what they called the regressed-frequencies hypothesis) that (a) the fre-
quencies with which individual letters occur at different positions in words are monitored (by people while
reading), and (b) the letter frequencies represented in the mind are regressed toward the mean of all letter
frequencies. This is a phenomenon often encountered in frequency judgment tasks, where low frequencies
tend to be overestimated and high frequencies underestimated; although this bias affects the accuracy of
the absolute size of frequency judgments, it does not affect their rank order. Thus, when asked for the
relative frequency of a particular letter, subjects should be expected to give judgments of relative letter
frequencies that reflect the actual ones, although they will overestimate relative frequencies below the mean
and underestimate those above the mean — a simple regressed-frequency heuristic. The studies performed
by Sedlmeier et al. consistently showed subjects’ judgments conforming best to the predictions of the
regressed-frequencies hypothesis.

While it is too soon to tell if the regressed-frequencies hypothesis is the actual mechanism used by subjects,
it does offer a better fit to experimental results than the availability heuristic.

13 Categorization
Children as young as four have been found to use categorization to direct the inferences they make,[140] andcategorization

many different studies have shown that people have an innate desire to create and use categories (they have
also been found to be sensitive to the costs and benefits of using categories[274]). By dividing items in the
world into categories of things, people reduce the amount of information they need to learn[360] by building
an indexed data structure that will enable them to lookup information on specific items they may not have
encountered before (by assigning that item to one or more categories and extracting information common to
items in those categories). For instance, a flying object with feathers and a beak might be assigned to the
category bird, which suggests the information that it lays eggs and may be migratory.

Source code is replete with examples of categories; similar functions are grouped together in the same
source file, objects belonging to a particular category are defined as members of the same structure type, andtransla-

tion unit
syntax

structure type
sequentially

allocated objects
declaration

syntax

enumerated types are defined to represent a common set of symbolic names.

enumeration
set of named

constants
symbolic

name

People seem to have an innate desire to create categories (people have been found to expect random
sequences to have certain attributes,[120] e.g., frequent alternation between different values, which from a
mathematical perspective represent regularity). There is the danger that developers, reading a program’s
source code will create categories that the original author was not aware existed. These new categories may

72 v 1.1 January 30, 2008

13 Categorization Introduction 0

represent insights into the workings of a program, or they may be completely spurious (and a source of
subsequent incorrect assumptions, leading to faults being introduced).

Categories can be used in many thought processes without requiring significant cognitive effort (a built-in
operation). For instance, categorization can be used to perform inductive reasoning (the derivation of
generalized knowledge from specific instances), and to act as a memory aid (remembering the members of a
category). There is a limit on the cognitive effort that developers have available to be used and making use of
a powerful ability, which does not require a lot of effort, helps optimize the use of available resources.

There have been a number of studies[379] looking at how people use so-called natural categories (i.e., those
occurring in nature such as mammals, horses, cats, and birds) to make inductive judgments. People’s use of
categorical-based arguments (e.g., “Grizzly bears love onions.” and “Polar bears love onions.” therefore “All
bears love onions.”) has also been studied.[332]

Source code differs from nature in that it is created by people who have control over how it is organized.
Recognizing that people have an innate ability to create and use categories, there is a benefit in trying to
maximize positive use (developers being able to infer probable behaviors and source code usage based on
knowing small amounts of information) of this ability and to minimize negative use (creating unintended
categories, or making inapplicable inductive judgments).

Source code can be organized in a myriad of ways. The problem is finding the optimal organization, which
first requires knowing what needs to be optimized. For instance, I might decide to split some functions I have
written that manipulate matrices and strings into two separate source files. I could decide that the functions I
wrote first will go in the first file and those that I wrote later in the second file, or perhaps the first file will
contain those functions used on project X and the second file those functions used on project Y. To an outside
observer, a more natural organization might be to place the matrix-manipulation functions in the first file and
the string-manipulation functions in the second file.

In a project that grows over time, functions may be placed in source files on an as-written basis; a
maintenance process that seeks to minimize disruption to existing code will keep this organization. When
two separate projects are merged into one, a maintenance process that seeks to minimize disruption to
existing code is unlikely to reorganize source file contents based on the data type being manipulated.
This categorization process, based on past events, is a major factor in the difficulty developers have in
comprehending old source. Because category membership is based on historical events, developers either
need knowledge of those events or they have to memorize information on large quantities of source. Program
comprehension changes from using category-based induction to relying on memory for events or source
code.

Even when the developer is not constrained by existing practices the choice of source organization is not
always clear-cut. An organization based on the data type being manipulated is one possibility, or there may
only be a few functions and an organization based on functionality supported (i.e., printing) may be more
appropriate. Selecting which to use can be a difficult decision. The following subsections discuss some of
the category formation studies that have been carried out, some of the theories of category formation, and
possible methods of calculating similarity to category.

Situations where source code categorization arise include: deciding which structure types should contain
which members, which source files should contain which object and function definitions, which source files declarations

in which source file

should be kept in which directories, whether functionality should go in a single function or be spread across
several functions, and what is the sequence of identifiers in an enumerated type?

Explicitly organizing source code constructs so that future readers can make use of their innate ability to
use categories, to perform inductive reasoning, is not meant to imply that other forms of reasoning are not
important. The results of deductive reasoning are generally the norm against which developer performance is
measured. However, in practice, developers do create categories and use induction. Coding guidelines need
to take account of this human characteristic. Rather than treating it as an aberration that developers need to
be trained out of, these coding guidelines seek to adapt to this innate ability.

January 30, 2008 v 1.1 73

Introduction 13 Categorization0

Alpha
Country

Beta
Country

X

Y

Z

Alpha
Country

Beta
Country

X

Y

Z

Congruent

Alpha
Country

Beta
Country

X

Y

Z

Alpha
Country

Beta
Country

X

Y

Z

Incongruent

Alpha
Country

Beta
Country

X

Y

Z

Alpha
Country

Beta
Country

X

Y

Z

Homogeneous

Figure 0.11: Country boundaries distort judgment of relative city locations. Adapted from Stevens.[431]

13.1 Category formation
How categories should be defined and structured has been an ongoing debate within all sciences. For instance,
the methods used to classify living organisms into family, genus, species, and subspecies has changed over
the years (e.g., most recently acquiring a genetic basis).

Categories do not usually exist in isolation. Category judgment is often organized according to a hierarchy
of relationships between concepts— a taxonomy. For instance, Jack Russell, German Shepherd, and Terrier
belong to the category of dog, which in turn belongs to the category of mammal, which in turn belongs to the
category of living creature. Organizing categories into hierarchies means that an attribute of a higher-level
category can affect the perceived attributes of a subordinate category. This effect was illustrated in a study by
Stevens and Coupe.[431] Subjects were asked to remember the information contained in a series of maps (see
Figure 0.11). They were then asked questions such as: “Is X east or west of Y?”, and “Is X north or south of
Y?” Subjects gave incorrect answers 18% of the time for the congruent maps, but 45% of the time for the
incongruent maps (15% for the homogeneous). They were using information about the relative locations of
the countries to answer questions about the city locations.

Several studies have shown that people use around three levels of abstraction in creating hierarchical
relationships. Rosch[385] called the highest level of abstraction the superordinate-level— for instance, the
general category furniture. The next level down is the basic-level; this is the level at which most categorization
is carried out— for instance, car, truck, chair, or table. The lowest level is the subordinate-level, denoting
specific types of objects. For instance, a family car, a removal truck, my favourite armchair, a kitchen table.
Rosch found that the basic-level categories had properties not shared by the other two categories; adults
spontaneously name objects at this level. It is also the abstract level that children acquire first, and category
members tend to have similar overall shapes.

• A study by Markman and Wisniewski[277] investigated how people view superordinate-level and basic-
level categories as being different. The results showed that basic-level categories, derived from the

74 v 1.1 January 30, 2008

13 Categorization Introduction 0

Animal

is a is a

breathes
eats

has skin

Bird
has wings
can fly
has feathers

is a is a

Canary
can sing

is yellow
Ostrich

is tall

can’t fly

Fish

is a is a

has fins
can swim

has gills

Shark
can bite

is dangerous
Salmon

is pink
is edible

spawns upstream

Figure 0.12: Hypothetical memory structure for a three-level hierarchy. Adapted from Collins.[78]

same superordinate-level, had a common structure that made it easy for people to compare attributes;
for instance, motorcycle, car, and truck are basic-level categories of vehicle. They all share attributes
(so-called alignable differences), for instance, number of wheels, method of steering, quantity of
objects that can be carried, size of engine, and driver qualifications that differ but are easily compared.
Superordinate-level categories differ from each other in that they do not share a common structure.
This lack of a common structure means it is not possible to align their attributes to differentiate them.
For these categories, differentiation occurs through the lack of a common structure. For instance, the
superordinate-level categories — vehicle, musical instrument, vegetable, and clothing — do not share
a common structure.

• A study by Tanaka and Taylor[442] showed that the quantity of a person’s knowledge and experience
can affect the categories they create and use.

• A study by Johansen and Palmeri[200] showed that representations of perceptual categories can change
with categorization experience. While these coding guidelines are aimed at experienced developers,
they recognize that many experienced developers are likely to be inexperienced comprehenders of
much of the source code they encounter. The guidelines in this book take the default position that,
given a choice, they should assume an experienced developer who is inexperienced with the source
being read.

There are likely to be different ways of categorizing the various components of source code. These cases
are discussed in more detail elsewhere. Commonality and regularities shared between different sections of

structure type
sequentially
allocated objects
typedef name
syntax
enumeration
set of named
constants
declaration
visual layout
statement
visual layout

source code may lead developers to implicitly form categories that were not intended by the original authors.
The extent to which the root cause is poor categorization by the original developers, or simply unrelated
regularities, is not discussed in this book.

What method do people use to decide which, if any, category a particular item is a member of? Several
different theories have been proposed and these are discussed in the following subsections.

13.1.1 The Defining-attribute theory
The defining-attribute theory proposes that members of a category are characterized by a set of defining
attributes. This theory predicts that attributes should divide objects up into different concepts whose
boundaries are well defined. All members of the concept are equally representative. Also, concepts that
are a basic-level of a superordinate-level concept will have all the attributes of that superordinate level; for
instance, a sparrow (small, brown) and its superordinate bird (two legs, feathered, lays eggs); see Figure 0.12.

Although scientists and engineers may create and use defining-attribute concept hierarchies, experimental
evidence shows that people do not naturally do so. Studies have shown that people do not treat category

January 30, 2008 v 1.1 75

Introduction 13 Categorization0

members as being equally representative, and some are rated as more typical than others.[380] Evidence
that people do not structure concepts into the neat hierarchies required by the defining-attribute theory was
provided by studies in which subjects verified membership of a more distant superordinate more quickly than
an immediate superordinate (according to the theory, the reverse situation should always be true).

13.1.2 The Prototype theory
In this theory, categories have a central description, the prototype, that represents the set of attributes of
the category. This set of attributes need not be necessary, or sufficient, to determine category membership.
The members of a category can be arranged in a typicality gradient, representing the degree to which they
represent a typical member of that category. It is also possible for objects to be members of more than one
category (e.g., tomatoes as a fruit, or a vegetable).

13.1.3 The Exemplar-based theory
The exemplar-based theory of classification proposes that specific instances, or exemplars, act as the
prototypes against which other members are compared. Objects are grouped, relative to one another, based
on some similarity metric. The exemplar-based theory differs from the prototype theory in that specific
instances are the norm against which membership is decided. When asked to name particular members of a
category, the attributes of the exemplars are used as cues to retrieve other objects having similar attributes.

13.1.4 The Explanation-based theory
The explanation-based theory of classification proposes that there is an explanation for why categories have
the members they do. For instance, the biblical classification of food into clean and unclean is roughly
explained by saying that there should be a correlation between type of habitat, biological structure, and form
of locomotion; creatures of the sea should have fins, scales, and swim (sharks and eels don’t) and creatures
of the land should have four legs (ostriches don’t).

From a predictive point of view, explanation-based categories suffer from the problem that they may
heavily depend on the knowledge and beliefs of the person who formed the category; for instance, the set of
objects a person would remove from their home while it was on fire.

Murphy and Medin[313] discuss how people can use explanations to achieve conceptual coherence in
selecting the members of a category (see Table 0.5).

Table 0.5: General properties of explanations and their potential role in understanding conceptual coherence. Adapted from
Murphy.[313]

Properties of Explanations Role in Conceptual Coherence

Explanation of a sort, specified over some
domain of observation

Constrains which attributes will be included in a concept
representation
Focuses on certain relationships over others in detecting
attribute correlations

Simplify reality Concepts may be idealizations that impose more structure
than is objectively present

Have an external structure— fits in with (or do
not contradict) what is already known

Stresses intercategory structure; attributes are considered
essential to the degree that they play a part in related theo-
ries (external structures)

Have an internal structure— defined in part by
relations connecting attributes

Emphasizes mutual constraints among attributes. May
suggest how concept attributes are learned

Interact with data and observations in some way Calls attention to inference processes in categorization and
suggests that more than attribute matching is involved

13.2 Measuring similarity
The intent is for these guideline recommendations to be automatically enforceable. This requires an algorithm

guideline rec-
ommendation

enforceable

0

for calculating similarity, which is the motivation behind the following discussion.
How might two objects be compared for similarity? For simplicity, the following discussion assumes

an object can have one of two values for any attribute, yes/no. The discussion is based on material in

76 v 1.1 January 30, 2008

13 Categorization Introduction 0

Classification and Cognition by W. K. Estes.[116]

To calculate the similarity of two objects, their corresponding attributes are matched. The product of the similarity
product rulesimilarity coefficient of each of these attributes is computed. A matching similarity coefficient, t (a value in

the range one to infinity, and the same for every match), is assigned for matching attributes. A nonmatching
similarity coefficient, si (a value in the range 0 to 1, and potentially different for each nonmatch), is assigned
for each nonmatching coefficient. For example, consider two birds that either have (plus sign), or do not have
(minus sign), some attribute (numbered 1 to 6 in Table 0.6). Their similarity, based on these attributes is
t×t×s3×t×s5×t.

Table 0.6: Computation of pattern similarity. Adapted from Estes.[116]

Attribute 1 2 3 4 5 6

Starling + + - + + +
Sandpiper + + + + - +
Attribute similarity t t s3 t s5 t

When comparing objects within the same category the convention is to give the similarity coefficient,
t, for matching attributes, a value of one. Another convention is to give the attributes that differ the same
similarity coefficient, s. In the preceding case, the similarity becomes s2.

Sometimes the similarity coefficient for matches needs to be taken into account. For instance, in the
following two examples the similarity between the first two character sequences is ts, while in the second
is t3s. Setting t to be one would result in both pairs of character sequences being considered to have the
same similarity, when in fact the second sequence would be judged more similar than the first. Studies on
same/different judgments show that both reaction time and error rates increase as a function of the number of
items being compared.[238] The value of t cannot always be taken to be unity.

A B A B C D
A E A E C D

The previous example computed the similarity of two objects to each other. If we have a category, we
can calculate a similarity to category measure. All the members of a category are listed. The similarity of
each member, compared with every other member, is calculated in turn and these values are summed for that
member. Such a calculation is shown in Table 0.7.

Table 0.7: Computation of similarity to category. Adapted from Estes.[116]

Object Ro Bl Sw St Vu Sa Ch Fl Pe Similarity to Category

Robin 1 1 1 s s4 s s5 s6 s5 3 + 2s + s4 + 2s5 + s6

Bluebird 1 1 1 s s4 s s5 s6 s5 3 + 2s + s4 + 2s5 + s6

Swallow 1 1 1 s s4 s s5 s6 s5 3 + 2s + s4 + 2s5 + s6

Starling s s s 1 s3 s2 s6 s5 s6 1 + 3s + s2 + s3 + s5 + 2s6

Vulture s4 s4 s4 s3 1 s5 s3 s2 s3 1 + s2 + 3s3 + 3s4 + s5

Sandpiper s s s s2 s5 1 s4 s5 s4 1 + 3s + s2 + s4 + s5

Chicken s5 s5 s5 s6 s3 s4 1 s 1 2 + s + s3 + s4 + 3s5 + s6

Flamingo s6 s6 s6 s5 s2 s5 s 1 s 1 + 2s + s2 + 2s5 + 3s6

Penguin s5 s5 s5 s6 s3 s4 1 s 1 2 + s + s3 + s4 + 3s5 + s6

Some members of a category are often considered to be more typical of that category than other members.
These typical members are sometimes treated as exemplars of that category, and serve as reference points
when people are thinking about that category. While there is no absolute measure of typicality, it is possible
to compare the typicality of two members of a category. The relative typicality, within a category for two or
more objects is calculated from their ratios of similarity to category. For instance, taking the value of s as

January 30, 2008 v 1.1 77

Introduction 13 Categorization0

0.5, the relative typicality of Robin with respect to Vulture is 4.14/(4.14 + 1.84) = 0.69, and the relative
typicality of Vulture with respect to Robin is 1.84/(4.14 + 1.84) = 0.31.

It is also possible to create derived categories from existing categories; for instance, large and small birds.
For details on how to calculate typicality within those derived categories, see Estes[116] (which also provides
experimental results).

An alternative measure of similarity is the contrast model. This measure of similarity depends positivelysimilarity
contrast model on the number of attributes two objects have in common, but negatively on the number of attributes that

belong to one but not the other.

Contrast Sim12 = af (F12)− bf (F1)− cf (F2) (0.14)

where F12 is the set of attributes common to objects 1 and 2, F1 the set of attributes that object 1 has but not
object 2, and F2 the set of attributes that object 2 has but not object 1. The quantities a, b, and c are constants.
The function f is some metric based on attributes; the one most commonly appearing in published research
is a simple count of attributes.

Taking the example given in Table 0.7, there are four features shared by the starling and sandpiper and one
that is unique to each of them. This gives:

Contrast Sim = 4a− 1b− 1c (0.15)

based on bird data we might take, for instance, a = 1, b = 0.5, and c = 0.25 giving a similarity of 3.25.
On the surface, these two models appear to be very different. However, some mathematical manipulation

shows that the two methods of calculating similarity are related.

Sim12 = tn12sn1+n2 = tn12sn1sn2 (0.16)

Taking the logarithm:

log(Sim12) = n12 log(t) + n1 log(s) + n2 log(s) (0.17)

letting a = log(t), b = log(s), c = log(s), and noting that the value of s is less than 1, we get:

log(Sim12) = a(n12)− b(n1)− c(n2) (0.18)

This expression for product similarity has the same form as the expression for contrast similarity. Although b
and c have the same value in this example, in a more general form the values of s could be different.

13.2.1 Predicting categorization performance
Studies [385] have shown that the order in which people list exemplars of categories correlates with theircategorization

performance
predicting relative typicality ratings. These results lead to the idea that relative typicality ratings could be interpreted

as probabilities of categorization responses. However, the algorithm for calculating similarity to category
values does not take into account the number of times a subject has encountered a member of the category
(which will control the strength of that member’s entry in the subject’s memory).

For instance, based on the previous example of bird categories when asked to “name the bird which comes
most quickly to mind, Robin or Penguin”, the probability of Robin being the answer is 4.14/(4.14+2.80) =
0.60, an unrealistically low probability. If the similarity values are weighted according to the frequency

78 v 1.1 January 30, 2008

13 Categorization Introduction 0

of each member’s entry in a subject’s memory array (Estes estimated the figures given in Table 0.8), the
probability of Robin becomes 1.24/(1.24 + 0.06) = 0.954, a much more believable probability. The need to
use frequency weightings to calculate a weighted similarity value has been verified by Nosofsky.[327]

Table 0.8: Computation of weighted similarity to category. From Estes.[116]

Object Similarity Formula s = 0.5 Relative Frequency Weighted Similarity

Robin 3 + 2s + s4 + 2s5 + s6 4.14 0.30 1.24
Bluebird 3 + 2s + s4 + 2s5 + s6 4.14 0.20 0.83
Swallow 3 + 2s + s4 + 2s5 + s6 4.14 0.10 0.41
Starling 1 + 3s + s2 + s3 + s5 + 2s6 2.94 0.15 0.44
Vulture 1 + s2 + 3s3 + 3s4 + s5 1.84 0.02 0.04
Sandpiper 1 + 3s + s2 + s4 + s5 2.94 0.05 0.15
Chicken 2 + s + s3 + s4 + 3s5 + s6 2.80 0.15 0.42
Flamingo 1 + 2s + s2 + 2s5 + 3s6 2.36 0.01 0.02
Penguin 2 + s + s3 + s4 + 3s5 + s6 2.80 0.02 0.06

The method of measuring similarity just described has been found to be a good predictor of the error
probability of people judging which category a stimulus belongs to. The following analysis is based on a
study performed by Shepard, Hovland, and Jenkins.[400]

A simpler example than the bird category is used to illustrate how the calculations are performed. Here,
the object attributes are color and shape, made up of the four combinations black/white, triangles/squares.
Taking the case where the black triangle and black square have been assigned to category A, and the white
triangle and white square have been assigned to category B, we get Table 0.9.

Table 0.9: Similarity to category (black triangle and black square assigned to category A; white triangle and white square assigned
to category B).

Stimulus Similarity to A Similarity to B

Dark triangle 1 + s s + s2

Dark square 1 + s s + s2

Light triangle s + s2 1 + s
Light square s + s2 1 + s

If a subject is shown a stimulus that belongs in category A, the expected probability of them assigning it
to that category is:

1 + s

(1 + s) + (s+ s2)
⇒ 1

1 + s
(0.19)

When s is 1 the expected probability is no better than a random choice; when s is 0 the probability is a
certainty.

Assigning different stimulus to different categories can change the expected response probability; for
instance, by assigning the black triangle and the white square to category A and assigning the white triangle
and black square to category B, we get the category similarities shown in Table 0.10.

Table 0.10: Similarity to category (black triangle and white square assigned to category A; white triangle and black square
assigned to category B).

Stimulus Similarity to A Similarity to B

Dark triangle s + s2 2s
Dark square 2s s + s2

Light triangle 2s s + s2

Light square s + s2 2s

January 30, 2008 v 1.1 79

Introduction 13 Categorization0

Shape

Color

Size

Figure 0.13: Representation of stimuli with shape in the horizontal plane and color in one of the vertical planes. Adapted from
Shepard.[400]

I II III

IV V VI

Figure 0.14: One of the six unique configurations (i.e., it is not possible to rotate one configuration into another within the set of
six) of selecting four times from eight possibilities. Adapted from Shepard.[400]

If a subject is shown a stimulus that belongs in category A, the expected probability of them assigning it
to that category is:

1 + s2

(2s) + (1 + s2)
⇒ 1 + s2

(1 + s)2 (0.20)

For all values of s between 0 and 1 (but not those two values), the probability of a subject assigning a stimulus
to the correct category is always less than for the category defined previously, in this case.

In the actual study performed by Shepard, Hovland, and Jenkins,[400] stimuli that had three attributes,
color/size/shape, were used. If there are two possible values for each of these attributes, there are eight
possible stimuli (see Figure 0.13).

Each category was assigned four different members. There are 70 different ways of taking four things
from a choice of eight (8!/(4!4!)), creating 70 possible categories. However, many of these 70 different
categories share a common pattern; for instance, all having one attribute, like all black or all triangles. If this
symmetry is taken into account, there are only six different kinds of categories. One such selection of six

80 v 1.1 January 30, 2008

13 Categorization Introduction 0

I II III

IV V VI

Figure 0.15: Example list of categories. Adapted from Shepard.[400]

categories is shown in Figure 0.14, the black circles denoting the selected attributes.
Having created these six categories, Shepard et al. trained and measured the performance of subjects in

assigning presented stimuli (one of the list of 70 possible combinations of four things— Figure 0.15) to one
of them.

Estes[116] found a reasonable level of agreement between the error rates reported by Shepard et al. and the
rates predicted by the similarity to category equations. There is also a connection between categorization
performance and Boolean complexity; this is discussed elsewhere. selection

statement
syntax

A series of studies by Feldman[123] was able to show a correlation between the difficulty subjects had
answering the Shepard classification problems and their boolean complexity (i.e., the length of the shortest
logically equivalent propositional formula).

13.3 Cultural background and use of information
The attributes used to organize information (e.g., categorize objects) has been found to vary across cultures[326] categorization

cultural dif-
ferencesand between experts and non-experts. The following studies illustrate how different groups of people agree or

differ in their categorization behavior (a cultural difference in the naming of objects is discussed elsewhere): naming
cultural differences

• A study by Bailenson, Shum, and Coley[29] asked US bird experts (average of 22.4 years bird watching),
US undergraduates, and ordinary Itzaj (Maya Amerindians people from Guatemala) to sort two sets
(of US and Maya) of 104 bird species into categories. The results found that the categorization choices
made by the three groups of subjects were internally consistent within each group. The correlation
between the taxonomies, created by the categories, and a published scientific taxonomy of US experts
(0.60 US birds, 0.70 Maya birds), Itzaj (0.45, 0.61), and nonexperts (0.38, 0.34). The US experts
correlated highly with the scientific taxonomy for both sets of birds, the Itzaj only correlated highly for
Maya birds, and the nonexperts had a low correlation for either set of birds. The reasons given for
the Maya choices varied between the expert groups; US experts were based on a scientific taxonomy,
Itzaj were based on ecological justifications (the birds relationship with its environment). Cultural
differences were found in that, for instance, US subjects were more likely to generalise from songbirds,
while the Itzaj were more likely to generalize from perceptually striking birds.

• A study by Proffitt, Coley, and Medin[368] told three kinds of tree experts (landscape gardeners, parks

January 30, 2008 v 1.1 81

Introduction 14 Decision making0

maintenance workers, scientists researching trees) about a new disease that affected two kinds of
tree (e.g., Horsechestnut and Ohio buckeye). Subjects were then asked what other trees they thought
might also be affected by this disease. The results showed differences between kinds of experts in the
kinds of justifications given for the answers. For instance, landscapers and maintenance workers used
more causal/ecological explanations (tree distribution, mechanism of disease transmission, resistance,
and susceptibility) and fewer similarity-based justifications (species diversity and family size). For
taxonomists this pattern was reversed.

14 Decision making
Writing source code is not a repetitive process. Developers have to think about what they are going to write,
which means they have to make decisions. Achieving the stated intent of these coding guidelines (minimizing
the cost of ownership source code) requires that they be included in this, developer, decision-making process.

coding
guidelines

introduction

0

There has been a great deal of research into how and why people make decisions in various contexts. For
instance, consumer research trying to predict how a shopper will decide among packets of soap powder on a
supermarket shelf. While the items being compared and their attributes vary (e.g., which soap will wash the
whitest, should an if statement or a switch statement be used; which computer is best), the same underlying
set of mechanisms appear to be used, by people, in making decisions.

The discussion in this section has been strongly influenced by The Adaptive Decision Maker by Payne,
Bettman, and Johnson.[340] The model of human decision making proposed by Payne et al. is based on the
idea that people balance the predicted cognitive effort required to use a particular decision-making strategy
against the likely accuracy achieved by that decision-making strategy. The book lists the following major
assumptions:

Payne[340] • Decision strategies are sequences of mental operations that can be usefully represented as productions of
the form IF (condition 1, . . . , condition n) THEN (action 1, . . . , action m).

• The cognitive effort needed to reach a decision using a particular strategy is a function of the number and
type of operators (productions) used by that strategy, with the relative effort levels of various strategies
contingent on task environments.

• Different strategies are characterized by different levels of accuracy, with the relative accuracy levels of
various strategies contingent on task environments.

• As a result of prior experiences and training, a decision maker is assumed to have more than one strategy
(sequence of operations) available to solve a decision problem of any complexity.

• Individuals decide how to decide primarily by considering both the cognitive effort and the accuracy of
the various strategies.

• Additional considerations, such as the need to justify a decision to others or the need to minimize the
conflict inherent in a decision problem, may also impact strategy selection.

• The decision of how to decide is sometimes a conscious choice and sometimes a learned contingency
among elements of the task and the relative effort and accuracy of decision strategies.

• Strategy selection is generally adaptive and intelligent, if not optimal.

14.1 Decision-making strategies
Before a decision can be made it is necessary to select a decision-making strategy. For instance, a developer
who is given an hour to write a program knows there is insufficient time for making complicated trade-offs
among alternatives. When a choice needs to be made, the likely decision-making strategy adopted would be
to compare the values of a single attribute, the estimated time required to write the code (a decision-making
strategy based on looking at the characteristics of a single attribute is known as the lexicographic heuristic).

lexicographic
heuristic

decision making

0

Researchers have found that people use a number of different decision-making strategies. In this section
we discuss some of these strategies and the circumstances under which people might apply them. The

82 v 1.1 January 30, 2008

14 Decision making Introduction 0

list of strategies discussed in the following subsections is not exhaustive, but it does cover many of the
decision-making strategies used when writing software.

The strategies differ in several ways. For instance, some make trade-offs among the attributes of the
alternatives (making it possible for an alternative with several good attributes to be selected instead of the
alternative whose only worthwhile attribute is excellent), while others make no such trade-offs. From the
human perspective, they also differ in the amount of information that needs to be obtained and the amount of
(brain) processing needed to make a decision. A theoretical analysis of the cost of decision making is given
by Shugan.[405]

14.1.1 The weighted additive rule
The weighted additive rule requires the greatest amount of effort, but delivers the most accurate result. It also weighted ad-

ditive rulerequires that any conflicts among different attributes be confronted. Confronting conflict is something, as we
shall see later, that people do not like doing. This rule consists of the following steps:

1. Build a list of attributes for each alternative.

2. Assign a value to each of these attributes.

3. Assign a weight to each of these attributes (these weights could, for instance, reflect the relative
importance of that attribute to the person making the decision, or the probability of that attribute
occurring).

4. For each alternative, sum the product of each of its attributes’ value and weight.

5. Select the alternative with the highest sum.

An example, where this rule might be applied, is in deciding whether an equality test against zero should be
made before the division of two numbers inside a loop. Attributes might include performance and reliability.
If a comparison against zero is made the performance will be decreased by some amount. This disadvantage
will be given a high or low weight depending on whether the loop is time-critical or not. The advantage is
that reliability will be increased because the possibility of a divide by zero can be avoided. If a comparison
against zero is not made, there is no performance penalty, but the reliability could be affected (it is necessary
to take into account the probability of the second operand to the divide being zero).

14.1.2 The equal weight heuristic
The equal weight heuristic is a simplification of the weighted additive rule in that it assigns the same weight
to every attribute. This heuristic might be applied when accurate information on the importance of each
attribute is not available, or when a decision to use equal weights has been made.

14.1.3 The frequency of good and bad features heuristic
People do not always have an evaluation function for obtaining the value of an attribute. A simple estimate in
terms of good/bad is sometimes all that is calculated (looking at things in black and white). By reducing the
range of attribute values, this heuristic is a simplification of the equal weight heuristic, which in turn is a
simplification of the weighted additive rule. This rule consists of the following steps:

1. List the good and bad attributes of every alternative.

2. Calculate the sum of each attributes good and the sum of its bad attributes.

3. Select the alternative with the highest count of either good or bad attributes, or some combination of
the two.

A coding context, where a good/bad selection might be applicable, occurs in choosing the type of an object.
If the object needs to hold a fractional part, it is tempting to use a floating type rather than an integer type
(perhaps using some scaling factor to enable the fractional part to be represented). Drawing up a list of good
and bad attributes ought to be relatively straight-forward; balancing them, to select a final type, might be a
little more contentious

January 30, 2008 v 1.1 83

Introduction 14 Decision making0

14.1.4 The majority of confirming dimensions heuristic
While people may not be able to explicitly state an evaluation function that provides a numerical measure of
an attribute, they can often give a yes/no answer to the question: Is the value of attribute X greater (or less)
for alternative A compared to alternative B?. This enables them to determine which alternative has the most
(or least) of each attribute. This rule consists of the following steps:

1. Select a pair of alternatives.

2. Compare each matching attribute in the two alternatives.

3. Select the alternative that has the greater number of winning attributes.

4. Pair the winning alternative with an uncompared alternative and repeat the compare/select steps.

5. Once all alternatives have been compared at least once, the final winning alternative is selected.

In many coding situations there are often only two viable alternatives. Pairwise comparison of their attributes
could be relatively easy to perform. For instance, when deciding whether to use a sequence of if statements
or a switch statement, possible comparison attributes include efficiency of execution, readability, ease of
changeability (adding new cases, deleting, or merging existing ones).

14.1.5 The satisficing heuristic
The result of the satisficing heuristic depends on the order in which alternatives are checked and often doessatisficing

heuristic
decision making not check all alternatives. Such a decision strategy, when described in this way, sounds unusual, but it is

simple to perform. This rule consists of the following steps:

1. Assign a cutoff, or aspirational, level that must be met by each attribute.

2. Perform the following for each alternative:

• Check each of its attributes against the cutoff level, rejecting the alternative if the attribute is
below the cutoff.

• If there are no attributes below the cutoff value, accept this alternative.

3. If no alternative is accepted, revise the cutoff levels associated the attributes and repeat the previous
step.

An example of the satisficing heuristic might be seen when selecting a library function to return some
information to a program. The list of attributes might include the amount of information returned and the
format it is returned in (relative to the format it is required to be in). Once a library function meeting the
developer’s minimum aspirational level has been found, additional effort is not usually invested in finding a
better alternative.

14.1.6 The lexicographic heuristic
The lexicographic heuristic has a low effort cost, but it might not be very accurate. It can also be intransitive;lexicographic

heuristic
decision making with X preferred to Y, Y preferred to Z, and Z preferred to X. This rule consists of the following steps:

1. Determine the most important attribute of all the alternatives.

2. Find the alternative that has the best value for the selected most important attribute.

3. If two or more alternatives have the same value, select the next most important attribute and repeat the
previous step using the set of alternatives whose attribute values tied.

4. The result is the alternative having the best value on the final, most important, attribute selected.

84 v 1.1 January 30, 2008

14 Decision making Introduction 0

An example of the intransitivity that can occur, when using this heuristic, might be seen when writing
software for embedded applications. Here the code has to fit within storage units that occur in fixed-size
increments (e.g., 8 K chips). It may be possible to increase the speed of execution of an application by writing
code for specific special cases; or have generalized code that is more compact, but slower. We might have the
following, commonly seen, alternatives (see Table 0.11).

Table 0.11: Storage/Execution performance alternatives.

Alternative Storage Needed Speed of Execution

X 7 K Low
Y 15 K High
Z 10 K Medium

Based on storage needed, X is preferred to Y. But because storage comes in 8 K increments there is
no preference, based on this attribute, between Y and Z; however, Y is preferred to Z based on speed of
execution. Based on speed of execution Z is preferred to X.

14.1.6.1 The elimination-by-aspects heuristic
The elimination-by-aspects heuristic uses cutoff levels, but it differs from the satisficing heuristic in that
alternatives are eliminated because their attributes fall below these levels. This rule consists of the following
steps:

1. The attributes for all alternatives are ordered (this ordering might be based on some weighting scheme).

2. For each attribute in turn, starting with the most important, until one alternative remains:

• Select a cutoff value for that attribute.
• Eliminate all alternatives whose value for that attribute is below the cutoff.

3. Select the alternative that remains.

This heuristic is often used when there are resource limitations, for instance, deadlines to meet, performance
levels to achieve, or storage capacities to fit within.

14.1.7 The habitual heuristic
The habitual heuristic looks for a match of the current situation against past situations, it does not contain any
evaluation function (although there are related heuristics that evaluate the outcome of previous decisions).
This rule consists of the step:

1. select the alternative chosen last time for that situation.

Your author’s unsubstantiated claim is that this is the primary decision-making strategy used by software
developers.

Sticking with a winning solution suggests one of two situations:

1. So little is known that once a winning solution is found, it is better to stick with it than to pay the cost
(time and the possibility of failure) of looking for a better solution that might not exist.

2. The developer has extensively analyzed the situation and knows the best solution.

Coding decisions are not usually of critical importance. There are many solutions that will do a satisfactory
job. It may also be very difficult to measure the effectiveness of any decision, because there is a significant
delay between the decision being made and being able to measure its effect. In many cases, it is almost

January 30, 2008 v 1.1 85

Introduction 14 Decision making0

impossible to separate out the effect of one decision from the effects of all the other decisions made (there
may be a few large coding decisions, but the majority are small ones).

A study by Klein[225] describes how fireground commanders use their experience to size-up a situationrecognition-
primed
decision making very rapidly. Orders are given to the firefighters under their command without any apparent decisions being

made (in their interviews they even found a fireground commander who claimed that neither he, nor other
commanders, ever made decisions; they knew what to do). Klein calls this strategy recognition-primed
decision making.

14.2 Selecting a strategy
Although researchers have uncovered several decision-making strategies that people use, their existence
does not imply that people will make use of all of them. The strategies available to individuals can vary
depending on their education, training, and experience. A distinction also needs to be made between a
person’s knowledge of a strategy (through education and training) and their ability to successfully apply it
(perhaps based on experience).

The task itself (that creates the need for a decision to be made) can affect the strategy used. These task
effects include task complexity, the response mode (how the answer needs to be given), how the information
is displayed, and context. The following subsections briefly outline these effects.

14.2.1 Task complexity
In general the more complex the decision, the more people will tend to use simplifying heuristics. Thetask complexity

decision making following factors influence complexity:

• Number of alternatives. As the number of alternatives that need to be considered grows, there are
shifts in the decision-making strategy used.

• Number of attributes. Increasing the number of attributes increases the confidence of people’s
judgments, but it also increases their variability. The evidence for changes in the quality of decision
making, as the number of attributes increases, is less clear-cut. Some studies show a decrease in
quality; it has been suggested that people become overloaded with information. There is also the
problem of deciding what constitutes a high-quality decision.

• Time pressure. People have been found to respond to time pressure in one of several ways. Some
respond by accelerating their processing of information, others respond by reducing the amount of
information they process (by filtering the less important information, or by concentrating on certain
kinds of information such as negative information), while others respond by reducing the range of
ideas and actions considered.

14.2.2 Response mode
There are several different response modes. For instance, a choice response mode frames the alternatives
in terms of different choices; a matching response mode presents a list of questions and answers and the
decision maker has to provide a matching answer to a question; a bidding response mode requires a value to
be given for buying or selling some object. There are also other response modes, that are not listed here.

The choice of response mode, in some cases, has been shown to significantly influence the preferred alter-
natives. In extreme cases, making a decision may result in X being preferred to Y, while the mathematically
equivalent decision, presented using a different response mode, can result in Y being preferred to X. For
instance, in gambling situations it has been found that people will prefer X to Y when asked to select between
two gambles (where X has a higher probability of winning, but with lower amounts), but when asked to bid
on gambles they prefer Y to X (with Y representing a lower probability of winning a larger amount).

Such behavior breaks what was once claimed to be a fundamental principle of rational decision theory,
procedure invariance. The idea behind this principle was that people had an invariant (relatively) set of
internal preferences that were used to make decisions. These experiments showed that sometimes preferences

86 v 1.1 January 30, 2008

14 Decision making Introduction 0

are constructed on the fly. Observed preferences are likely to take a person’s internal preferences and the
heuristics used to construct the answer into account.

Code maintenance is one situation where the task can have a large impact on how the answer is selected.
When small changes are made to existing code, many developers tend to operate in a matching mode,
choosing constructs similar, if not identical, to the ones in the immediately surrounding lines of code. If
writing the same code from scratch, there is nothing to match, another response mode will necessarily need
to be used in deciding what constructs to use.

A lot of the theoretical discussion on the reasons for these response mode effects has involved distinguish-
ing between judgment and choice. People can behave differently, depending on whether they are asked to
make a judgment or a choice. When writing code, the difference between judgment and choice is not always
clear-cut. Developers may believe they are making a choice between two constructs when in fact they have
already made a judgment that has reduced the number of alternatives to choose between.

Writing code is open-ended in the sense that theoretically there are an infinite number of different ways
of implementing what needs to be done. Only half a dozen of these might be considered sensible ways of
implementing some given functionality, with perhaps one or two being commonly used. Developers often
limit the number of alternatives under consideration because of what they perceive to be overriding external
factors, such as preferring an inline solution rather than calling a library function because of alleged quality
problems with that library. One possibility is that decision making during coding be considered as a two-stage
process, using judgment to select the alternatives, from which one is chosen.

14.2.3 Information display
Studies have shown that how information, used in making a decision, is displayed can influence the choice
of a decision-making strategy.[392] These issues include: only using the information that is visible (the
concreteness principle), the difference between available information and processable information (displaying
the price of one brand of soap in dollars per ounce, while another brand displays francs per kilogram), the
completeness of the information (people seem to weigh common attributes more heavily than unique ones,
perhaps because of the cognitive ease of comparison), and the format of the information (e.g., digits or words
for numeric values).

What kind of information is on display when code is being written? A screen’s worth of existing code is
visible on the display in front of the developer. There may be some notes to the side of the display. All other
information that is used exists in the developer’s head.

Existing code is the result of past decisions made by the developer; it may also be modified by future
decisions that need to be made (because of a need to modify the behavior of this existing code). For
instance, the case in which another conditional statement needs to be added within a deeply nested series of
conditionals. The information display (layout) of the existing code can affect the developer’s decision about
how the code is to be modified (a function, or macro, might be created instead of simply inserting the new
conditional). Here the information display itself is an attribute of the decision making (code wrapping, at the
end of a line, is an attribute that has a yes/no answer).

14.2.4 Agenda effects
The agenda effect occurs when the order in which alternatives are considered influences the final answer. agenda effects

decision makingFor instance, take alternatives X, Y, and Z and group them into some form of hierarchy before performing a
selection. When asked to choose between the pair [X, Y] and Z (followed by a choice between X and Y if
that pair is chosen) and asked to choose between the pair [X, Z] and Y (again followed by another choice if
that pair is chosen), an agenda effect would occur if the two final answers were different.

An example of the agenda effect is the following. When writing coding, it is sometimes necessary to
decide between writing in line code, using a macro, or using a function. These three alternatives can be
grouped into a natural hierarchy depending on the requirements. If efficiency is a primary concern, the
first decision may be between [in line, macro] and function, followed by a decision between in line
and macro (if that pair is chosen). If we are more interested in having some degree of abstraction, the first
decision is likely to be between [macro, function] and in line (see Figure 0.16).

January 30, 2008 v 1.1 87

Introduction 14 Decision making0

in line or function or macro

in line or function macro

in line function

in line or function or macro

in line function or macro

function macro

Figure 0.16: Possible decision paths when making pair-wise comparisons on whether to use a inline code, a function, or a macro;
for two different pair-wise associations.

In the efficiency case, if performance is important in the context of the decision, [in line, macro] is
likely to be selected in preference to function. Once this initial choice has been made other attributes can
be considered (since both alternatives have the same efficiency). We can now decide whether abstraction is
considered important enough to select macro over in line.

If the initial choice had been between [macro, function] and in line, the importance of efficiency
would have resulted in in line being chosen (when paired with function, macro appears less efficient by
association).

14.2.5 Matching and choosing
When asked to make a decision based on matching, a person is required to specify the value of some variable
such that two alternatives are considered to be equivalent. For instance, how much time should be spent
testing 200 lines of code to make it as reliable as the 500 lines of code that has had 10 hours of testing
invested in it? When asked to make a decision based on choice, a person is presented with a set of alternatives
and is required to specify one of them.

A study by Tversky, Sattath, and Slovic[465] investigated the prominence hypothesis. This proposes that
when asked to make a decision based on choice, people tend to use the prominent attributes of the options
presented (adjusting unweighted intervals being preferred for matching options). Their study suggested that
there were differences between the mechanisms used to make decisions for matching and choosing.

14.3 The developer as decision maker
The writing of source code would seem to require developers to make a very large number of decisions. How-
ever, experience shows that developers do not appear to be consciously making many decisions concerning
what code to write. Most decisions being made involve issues related to the mapping from the application
domain, choosing algorithms, and general organizational issues (i.e., where functions or objects should be
defined).

Many of the coding-level decisions that need to be made occur again and again. Within a year or so,
in full-time software development, sufficient experience has usually been gained for many decisions to
be reduced to matching situations against those previously seen, and selecting the corresponding solution.
For instance, the decision to use a series of if statements or a switch statement might require the pattern
same variable tested against integer constant and more than two tests are made to be true before a switch
statement is used. This is what Klein[225] calls recognition-primed decision making. This code writing

recognition-
primed

decision making

0

methodology works because there is rarely a need to select the optimum alternative from those available.
Some decisions occur to the developer as code is being written. For instance, a developer may notice

that the same sequence of statements, currently being written, was written earlier in a different part of the
source (or perhaps it will occur to the developer that the same sequence of statements is likely to be needed
in code that is yet to be written). At this point the developer has to make a decision about making a decision
(metacognition). Should the decision about whether to create a function be put off until the current work item
is completed, or should the developer stop what they are currently doing to make a decision on whether to

88 v 1.1 January 30, 2008

14 Decision making Introduction 0

Effort

R
el

at
iv

e
ac

cu
ra

cy
(W

A
D

D
=1

)
0

0.25

0.5

0.75

1.0

0 50 100 150 200

WADD

EQW

MCD
LEX

EBA

RC

Figure 0.17: Effort and accuracy levels for various decision-making strategies; EBA (Elimination-by-aspects heuristic), EQW
(equal weight heuristic), LEX (lexicographic heuristic), MCD (majority of confirming dimensions heuristic), RC (Random
choice), and WADD (weighted additive rule). Adapted from Payne.[340]

turn the statement sequence into a function definition? Remembering work items and metacognitive decision
processes are handled by a developer’s attention. The subject of attention is discussed elsewhere. 0 attention

Just because developers are not making frequent, conscious decisions does not mean that their choices are
consistent and repeatable (they will always make the same decision). There are a number of both internal and
external factors that may affect the decisions made. Researchers have uncovered a wide range of issues, a
few of which are discussed in the following subsections.

14.3.1 Cognitive effort vs. accuracy
People like to make accurate decisions with the minimum of effort. In practice, selecting a decision-making effort vs. accuracy

decision makingstrategy requires trading accuracy against effort (or to be exact, expected effort making the decision; the
actual effort required can only be known after the decision has been made).

The fact that people do make effort/accuracy trade-offs is shown by the results from a wide range of studies
(this issue is also discussed elsewhere, and Payne et al.[340] discuss this topic in detail). See Figure 0.17 for a 0 cost/accuracy

trade-off

comparison.
The extent to which any significant cognitive effort is expended in decision making while writing code

is open to debate. A developer may be expending a lot of effort on thinking, but this could be related to
problem solving, algorithmic, or design issues.

One way of performing an activity that is not much talked about, is flow— performing an activity without developer
flowany conscious effort— often giving pleasure to the performer. A best-selling book on the subject of flow[90]

is subtitled “The psychology of optimal experience”, something that artistic performers often talk about.
Developers sometimes talk of going with the flow or just letting the writing flow when writing code; something
writers working in any medium might appreciate. However, it is your author’s experience that this method of
working often occurs when deadlines approach and developers are faced with writing a lot of code quickly.
Code written using flow is often very much like a river; it has a start and an ending, but between those points
it follows the path of least resistance, and at any point readers rarely have any idea of where it has been or
where it is going. While works of fiction may gain from being written in this way, the source code addressed
by this book is not intended to be read for enjoyment. While developers may enjoy spending time solving
mysteries, their employers do not want to pay them to have to do so.

Code written using flow is not recommended, and is not discussed further here. The use of intuition is
discussed elsewhere. 0 developer

intuition

14.3.2 Which attributes are considered important?
Developers tend to consider mainly technical attributes when making decisions. Economic attributes are often developer

funignored, or considered unimportant. No discussion about attributes would be complete without mentioning

January 30, 2008 v 1.1 89

Introduction 14 Decision making0

fun. Developers have gotten used to the idea that they can enjoy themselves at work, doing fun things.
Alternatives that have a negative value for the fun attribute, and a large positive value for the time to carry
out attribute are often quickly eliminated.

The influence of developer enjoyment on decision making, can be seen in many developers’ preference for
writing code, rather than calling a library function. On a larger scale, the often-heard developer recommenda-
tion for rewriting a program, rather than reengineering an existing one, is motivated more by the expected
pleasure of writing code than the economics (and frustration) of reengineering.

One reason for the lack of consideration of economic factors is that many developers have no training, or
experience in this area. Providing training is one way of introducing an economic element into the attributes
used by developers in their decision making.

14.3.3 Emotional factors
Many people do not like being in a state of conflict and try to avoid it. Making a decision can create conflict,developer

emotional fac-
tors by requiring one attribute to be traded off against another. For instance, having to decide whether it is

more important for a piece of code to execute quickly or reliably. It has been argued that people will avoidweighted
additive rule

0

strategies that involve difficult, emotional, value trade-offs.
Emotional factors relating to source code need not be limited to internal, private developer decision

making. During the development of an application involving more than one developer, particular parts of the
source are often considered to be owned by an individual developer. A developer asked to work on another
developers source code, perhaps because that person is away, will sometimes feel the need to adopt the
style of that developer, making changes to the code in a way that is thought to be acceptable to the absent
developer. Another approach is to ensure that the changes stand out from the owner’s code. On the owning
developer’s return, the way in which changes were made is explained. Because they stand out, developers
can easily see what changes were made to their code and decide what to do about them.

People do not like to be seen to make mistakes. It has been proposed[107] that people have difficulty using
a decision-making strategy, that makes it explicit that there is some amount of error in the selected alternative.
This behavior occurs even when it can be shown that the strategy would lead to better, on average, solutions
than the other strategies available.

14.3.4 Overconfidence
A person is overconfident when their belief in a proposition is greater than is warranted by the informationoverconfidence

available to them. It has been argued that overconfidence is a useful attribute that has been selected for by
evolution. Individuals who overestimates their ability are more likely to undertake activities they would not
otherwise have been willing to do. Taylor and Brown[443] argue that a theory of mental health defined in
terms of contact with reality does not itself have contact with reality: “Rather, the mentally healthy person
appears to have the enviable capacity to distort reality in a direction that enhances self-esteem, maintains
beliefs in personal efficacy, and promotes an optimistic view of the future.”

Numerous studies have shown that most people are overconfident about their own abilities compared with
others. People can be overconfident in their ability for several reasons: confirmation bias can lead to availableconfirma-

tion bias
0

information being incorrectly interpreted; a person’s inexpert calibration (the degree of correlation between
confidence and performance) of their own abilities is another reason. A recent study[224] has also highlighted
the importance of the how, what, and whom of questioning in overconfidence studies. In some cases, it has
been shown to be possible to make overconfidence disappear, depending on how the question is asked, or on
what question is asked. Some results also show that there are consistent individual differences in the degree
of overconfidence.

Charles Darwin,
In The descent of

man, 1871, p. 3

ignorance more frequently begets confidence than does knowledge

A study by Glenberg and Epstein[146] showed the danger of a little knowledge. They asked students, who
were studying either physics or music, to read a paragraph illustrating some central principle (of physics
or music). Subjects were asked to rate their confidence in being able to accurately answer a question about

90 v 1.1 January 30, 2008

14 Decision making Introduction 0

Subjects’ estimate of their ability

Pr
op

or
tio

n
co

rr
ec

t

0.5

0.6

0.7

0.8

0.9

1.0

0.6 0.7 0.8 0.9 1.0

∆

∆ ∆
∆ ∆

∆

Easy Hard

Figure 0.18: Subjects’ estimate of their ability (bottom scale) to correctly answer a question and actual performance in answering
on the left scale. The responses of a person with perfect self-knowledge is given by the solid line. Adapted from Lichtenstein.[264]

the text. They were then presented with a statement drawing some conclusion about the text (it was either
true or false), which they had to answer. They then had to rate their confidence that they had answered the
question correctly. This process was repeated for a second statement, which differed from the first in having
the opposite true/false status.

The results showed that the more physics or music courses a subject had taken, the more confident they
were about their own abilities. However, a subject’s greater confidence in being able to correctly answer
a question, before seeing it, was not matched by a greater ability to provide the correct answer. In fact as
subjects’ confidence increased, the accuracy of the calibration of their own ability went down. Once they had
seen the question, and answered it, subjects were able to accurately calibrate their performance.

Subjects did not learn from their previous performances (in answering questions). They could have used
information on the discrepancy between their confidence levels before/after seeing previous questions to
improve the accuracy of their confidence estimates on subsequent questions.

The conclusion drawn by Glenberg and Epstein was that subjects’ overconfidence judgments were based
on self-classification as an expert, within a domain, not the degree to which they comprehended the text.

A study by Lichtenstein and Fishhoff[264] discovered a different kind of overconfidence effect. As the
difficulty of a task increased, the accuracy of people’s estimates of their own ability to perform the task
decreased. In this study subjects were asked general knowledge questions, with the questions divided into two
groups, hard and easy. The results in Figure 0.18 show that subjects’ overestimated their ability (bottom scale)
to correctly answer (actual performance, left scale) hard questions. On the other hand, they underestimated
their ability to answer easy questions. The responses of a person with perfect self-knowledge are given by
the solid line.

These, and subsequent results, show that the skills and knowledge that constitute competence in a particular
domain are the same skills needed to evaluate one’s (and other people’s) competence in that domain. People
who do not have these skills and knowledge lack metacognition (the name given by cognitive psychologists
to the ability of a person to accurately judge how well they are performing). In other words, the knowledge
that underlies the ability to produce correct judgment is the same knowledge that underlies the ability to
recognize correct judgment.

Some very worrying results, about what overconfident people will do, were obtained in a study performed
by Arkes, Dawes, and Christensen.[19] This study found that subjects used a formula that calculated the best
decision in a probabilistic context (provided to them as part of the experiment) less when incentives were
provided or the subjects thought they had domain expertise. This behavior even continued when the subjects
were given feedback on the accuracy of their own decisions. The explanation, given by Arkes et al., was that
when incentives were provided, people changed decision-making strategies in an attempt to beat the odds.
Langer[245] calls this behavior the illusion of control.

January 30, 2008 v 1.1 91

Introduction 14 Decision making0

Developers overconfidence and their aversion to explicit errors can sometimes be seen in the handling
of floating-point calculations. A significant amount of mathematical work has been devoted to discovering
the bounds on the errors for various numerical algorithms. Sometimes it has been proved that the error
in the result of a particular algorithm is the minimum error attainable (there is no algorithm whose result
has less error). This does not seem to prevent some developers from believing that they can design a more
accurate algorithm. Phrases, such as mean error and average error, in the presentation of an algorithm’s
error analysis do not help. An overconfident developer could take this as a hint that it is possible to do better
for the conditions that prevail in his (or her) application (and not having an error analysis does not disprove it
is not better).

14.4 The impact of guideline recommendations on decision making
A set of guidelines can be more than a list of recommendations that provide a precomputed decision matrix.
A guidelines document can provide background information. Before making any recommendations, the
author(s) of a guidelines document need to consider the construct in detail. A good set of guidelines will
document these considerations. This documentation provides a knowledge base of the alternatives that might
be considered, and a list of the attributes that need to be taken into account. Ideally, precomputed values
and weights for each attribute would also be provided. At the time of this writing your author only has a
vague idea about how these values and weights might be computed, and does not have the raw data needed to
compute them.

A set of guideline recommendations can act as a lightening rod for decisions that contain an emotional
dimension. Adhering to coding guidelines being the justification for the decision that needs to be made.justifying

decisions
0

Having to justify decisions can affect the decision-making strategy used. If developers are expected to adhere
to a set of guidelines, the decisions they make could vary depending on whether the code they write is
independently checked (during code review, or with a static analysis tool).

14.5 Management’s impact on developers’ decision making
Although lip service is generally paid to the idea that coding guidelines are beneficial, all developers seem to
have heard of a case where having to follow guidelines has been counterproductive. In practice, when first
introduced, guidelines are often judged by both the amount of additional work they create for developers
and the number of faults they immediately help locate. While an automated tool may uncover faults in
existing code, this is not the primary intended purpose of using these coding guidelines. The cost of adhering
to guidelines in the present is paid by developers; the benefit is reaped in the future by the owners of the
software. Unless management successfully deals with this cost/benefit situation, developers could decide it is
not worth their while to adhere to guideline recommendations.

What factors, controlled by management, have an effect on developers’ decision making? The following
subsections discuss some of them.

14.5.1 Effects of incentives
Some deadlines are sufficiently important that developers are offered incentives to meet them. Studies, on
use of incentives, show that their effect seems to be to make people work harder, not necessarily smarter.

Increased effort is thought to lead to improved results. Research by Paese and Sniezek[333] found that
increased effort led to increased confidence in the result, but without there being any associated increase in
decision accuracy.

Before incentives can lead to a change of decision-making strategies, several conditions need to be met:

• The developer must believe that a more accurate strategy is required. Feedback on the accuracy
of decisions is the first step in highlighting the need for a different strategy,[171] but it need not be
sufficient to cause a change of strategy.

• A better strategy must be available. The information needed to be able to use alternative strategies may
not be available (for instance, a list of attribute values and weights for a weighted average strategy).

• The developer must believe that they are capable of performing the strategy.

92 v 1.1 January 30, 2008

14 Decision making Introduction 0

14.5.2 Effects of time pressure
Research by Payne, Bettman, and Johnson,[340] and others, has shown that there is a hierarchy of responses
for how people deal with time pressure:

1. They work faster.
2. If that fails, they may focus on a subset of the issues.
3. If that fails, they may change strategies (e.g., from alternative based to attribute based).

If the time pressure is on delivering a finished program, and testing has uncovered a fault that requires
changes to the code, then the weighting assigned to attributes is likely to be different than during initial
development. For instance, the risk of a particular code change impacting other parts of the program is
likely to be a highly weighted attribute, while maintainability issues are usually given a lower weighting as
deadlines approach.

14.5.3 Effects of decision importance
Studies investigating at how people select decision-making strategies have found that increasing the benefit
for making a correct decision, or having to make a decision that is irreversible, influences how rigorously a
strategy is applied, not which strategy is applied.[37]

The same coding construct can have a different perceived importance in different contexts. For instance,
defining an object at file scope is often considered to be a more important decision than defining one in block
scope. The file scope declaration has more future consequences than the one in block scope.

An irreversible decision might be one that selects the parameter ordering in the declaration of a library
function. Once other developers have included calls to this function in their code, it can be almost impossible
(high cost/low benefit) to change the parameter ordering.

14.5.4 Effects of training
A developer’s training in software development is often done using examples. Sample programs are used
to demonstrate the solutions to small problems. As well as learning how different constructs behave, and
how they can be joined together to create programs, developers also learn what attributes are considered to
be important in source code. They learn the implicit information that is not written down in the text books.
Sources of implicit learning include the following:

• The translator used for writing class exercises. All translators have their idiosyncrasies and beginners
are not sophisticated enough to distinguish these from truly generic behavior. A developer’s first
translator usually colors his view of writing code for several years.

• Personal experiences during the first few months of training. There are usually several different
alternatives for performing some operation. A bad experience (perhaps being unable to get a program
that used a block scope array to work, but when the array was moved to file scope the program worked)
with some construct can lead to a belief that use of that construct was problem-prone and to be avoided
(all array objects being declared, by that developer, at file scope and never in block scope).

• Instructor biases. The person teaching a class and marking submitted solutions will impart their own
views on what attributes are important. Efficiency of execution is an attribute that is often considered
to be important. Its actual importance, in most cases, has declined from being crucial 50 years ago
to being almost a nonissue today. There is also the technical interest factor in trying to write code
as efficiently as possible. A related attribute is program size. Praise is more often given for short
programs, rather than longer ones. There are applications where the size of the code is important,
but generally time spent writing the shortest program is wasted (and may even be more difficult to
comprehend than a longer program).

• Consideration for other developers. Developers are rarely given practical training on how to read code,
or how to write code that can easily be read by others. Developers generally believe that any difficulty
others experience in comprehending their code is not caused by how they wrote it.

January 30, 2008 v 1.1 93

Introduction 14 Decision making0

• Preexisting behavior. Developers bring their existing beliefs and modes of working to writing C source.
These can range from behavior that is not software-specific, such as the inability to ignore sunk costs
(i.e., wanting to modify an existing piece of code, they wrote earlier, rather than throw it away and
starting again; although this does not seem to apply to throwing away code written by other people), to
the use of the idioms of another language when writing in C.

• Technically based. Most existing education and training in software development tends to be based
on purely technical issues. Economic issues are not usually raised formally, although informally
time-to-completion is recognized as an important issue.

Unfortunately, once most developers have learned an initial set of attribute values and weightings for source
code constructs, there is usually a long period of time before any subsequent major tuning or relearning
takes place. Developers tend to be too busy applying their knowledge to question many of the underlying
assumptions they have picked up along the way.

Based on this background, it is to be expected that many developers will harbor a few myths about what
constitutes a good coding decision in certain circumstances. These coding guidelines cannot address all
coding myths. Where appropriate, coding myths commonly encountered by your author are discussed.

14.5.5 Having to justify decisions
Studies have found that having to justify a decision can affect the choice of decision-making strategy to bejustifying deci-

sions used. For instance, Tetlock and Boettger[448] found that subjects who were accountable for their decisions
used a much wider range of information in making judgments. While taking more information into account
did not necessarily result in better decisions, it did mean that additional information that was both irrelevant
and relevant to the decision was taken into account.

It has been proposed, by Tversky,[461] that the elimination-by-aspects heuristic is easy to justify. However,
while use of this heuristic may make for easier justification, it need not make for more accurate decisions.

A study performed by Simonson[413] showed that subjects who had difficulty determining which alternative
had the greatest utility tended to select the alternative that supported the best overall reasons (for choosing it).

Tetlock[447] included an accountability factor into decision-making theory. One strategy that handles
accountability as well as minimizing cognitive effort is to select the alternative that the perspective audience
(i.e., code review members) is thought most likely to select. Not knowing which alternative they are likely to
select can lead to a more flexible approach to strategies. The exception occurs when a person has already
made the decision; in this case the cognitive effort goes into defending that decision.

During a code review, a developer may have to justify why a particular decision was made. While
developers know that time limits will make it very unlikely that they will have to justify every decision, they
do not know in advance which decisions will have to be justified. In effect, the developer will feel the need to
be able to justify most decisions.

Requiring developers to justify why they have not followed a particular guideline recommendation can
be a two-edged sword. Developers can respond by deciding to blindly follow guidelines (the path of least
resistance), or they can invest effort in evaluating, and documenting, the different alternatives (not necessarily
a good thing since the invested effort may not be warranted by the expected benefits). The extent to which
some people will blindly obey authority was chillingly demonstrated in a number of studies by Milgram.[295]

14.6 Another theory about decision making
The theory that selection of a decision-making strategy is based on trading off cognitive effort and accuracy
is not the only theory that has been proposed. Hammond, Hamm, Grassia, and Pearson[159] proposed that
analytic decision making is only one end of a continuum; at the other end is intuition. They performed a
study, using highway engineers, involving three tasks. Each task was designed to have specific characteristics
(see Table 0.12). One task contained intuition-inducing characteristics, one analysis-inducing, and the third
an equal mixture of the two. For the problems studied, intuitive cognition outperformed analytical cognition
in terms of the empirical accuracy of the judgments.

94 v 1.1 January 30, 2008

15 Expertise Introduction 0

Table 0.12: Inducement of intuitive cognition and analytic cognition, by task conditions. Adapted from Hammond.[159]

Task Characteristic Intuition-Inducing State of
Task Characteristic

Analysis-Inducing State of Task
Characteristic

Number of cues Large (>5) Small
Measurement of cues Perceptual measurement Objective reliable measurement
Distribution of cue values Continuous highly variable

distribution
Unknown distribution; cues are
dichotomous; values are discrete

Redundancy among cues High redundancy Low redundancy
Decomposition of task Low High
Degree of certainty in task Low certainty High certainty
Relation between cues and criterion Linear Nonlinear
Weighting of cues in environmental model Equal Unequal
Availability of organizing principle Unavailable Available
Display of cues Simultaneous display Sequential display
Time period Brief Long

One of the conclusions that Hammond et al. drew from these results is that “Experts should increase their
awareness of the correspondence between task and cognition”. A task having intuition-inducing characteris-
tics is most likely to be out carried using intuition, and similarly for analysis-inducing characteristics.

Many developers sometimes talk of writing code intuitively. Discussion of intuition and flow of conscious-
ness are often intermixed. The extent to which either intuitive or analytic decision making (if that is how 0 developer

flow

developers operate) is more cost effective, or practical, is beyond this author’s ability to even start to answer.
It is mentioned in this book because there is a bona fide theory that uses these concepts and developers
sometimes also refer to them.

Intuition can be said to be characterized by rapid data processing, low cognitive control (the consistency developer
intuitionwith which a judgment policy is applied), and low awareness of processing. Its opposite, analysis, is

characterized by slow data processing, high cognitive control, and high awareness of processing.

15 Expertise
People are referred to as being experts, in a particular domain, for several reasons, including: expertise

• Well-established figures, perhaps holding a senior position with an organization heavily involved in
that domain.

• Better at performing a task than the average person on the street.

• Better at performing a task than most other people who can also perform that task.

• Self-proclaimed experts, who are willing to accept money from clients who are not willing to take
responsibility for proposing what needs to be done.[197]

Schneider[393] defines a high-performance skill as one for which (1) more than 100 hours of training are
required, (2) substantial numbers of individuals fail to develop proficiency, and (3) the performance of an
expert is qualitatively different from that of the novice.

In this section, we are interested in why some people (the experts) are able to give a task performance that
is measurably better than a non-expert (who can also perform the task).

There are domains in which those acknowledged as experts do not perform significantly better than those
considered to be non-experts.[59] For instance, in typical cases the performance of medical experts was not
much greater than those of doctors after their first year of residency, although much larger differences were
seen for difficult cases. Are there domains where it is intrinsically not possible to become significantly better
than one’s peers, or are there other factors that can create a large performance difference between expert
and non-expert performances? One way to help answer this question is to look at domains where the gap
between expert and non-expert performance can be very large.

January 30, 2008 v 1.1 95

Introduction 15 Expertise0

It is a commonly held belief that experts have some innate ability or capacity that enables them to do what
they do so well. Research over the last two decades has shown that while innate ability can be a factor in
performance (there do appear to be genetic factors associated with some athletic performances), the main
factor in acquiring expert performance is time spent in deliberate practice.[112]

Deliberate practice is different from simply performing the task. It requires that people monitor their
practice with full concentration and obtain feedback[171] on what they are doing (often from a professional
teacher). It may also involve studying components of the skill in isolation, attempting to improve on particular
aspects. The goal of this practice being to improve performance, not to produce a finished product.

Studies of the backgrounds of recognized experts, in many fields, found that the elapsed time between
them starting out and carrying out their best work was at least 10 years, often with several hours of deliberate
practice every day of the year. For instance, Ericsson, Krampe, and Tesch-Romer[113] found that, in a study
of violinists (a perceptual-motor task), by age 20 those at the top level had practiced for 10,000 hours, those
at the next level down 7,500 hours, and those at the lowest level of expertise had practiced for 5,000 hours.
They also found similar quantities of practice being needed to attain expert performance levels in purely
mental activities (e.g., chess).

People often learn a skill for some purpose (e.g., chess as a social activity, programming to get a job)
without the aim of achieving expert performance. Once a certain level of proficiency is achieved, they stop
trying to learn and concentrate on using what they have learned (in work, and sport, a distinction is made
between training for and performing the activity). During everyday work, the goal is to produce a product or
to provide a service. In these situations people need to use well-established methods, not try new (potentially
dead-end, or leading to failure) ideas to be certain of success. Time spent on this kind of practice does not
lead to any significant improvement in expertise, although people may become very fluent in performing
their particular subset of skills.

What of individual aptitudes? In the cases studied by researchers, the effects of aptitude, if there are any,
have been found to be completely overshadowed by differences in experience and deliberate practice times.
What makes a person willing to spend many hours, every day, studying to achieve expert performance is open
to debate. Does an initial aptitude or interest in a subject lead to praise from others (the path to musical and
chess expert performance often starts in childhood), which creates the atmosphere for learning, or are other
issues involved? IQ does correlate to performance during and immediately after training, but the correlation
reduces over the years. The IQ of experts has been found to be higher than the average population at about
the level of college students.

In many fields expertise is acquired by memorizing a huge amount of, domain-specific, knowledge and
having the ability to solve problems using pattern-based retrieval on this knowledge base. The knowledge is
structured in a form suitable for the kind of information retrieval needed for problems in a domain.[114]

A study by Carlson, Khoo, Yaure, and Schneider[61] examined changes in problem-solving activity as
subjects acquired a skill (trouble shooting problems with a digital circuit). Subjects started knowing nothing,
were given training in the task, and then given 347 problems to solve (in 28 individual, two-hour sessions,
over a 15-week period). The results showed that subjects made rapid improvements in some areas (and little
thereafter), extended practice produced continuing improvement in some of the task components, subjects
acquired the ability to perform some secondary tasks in parallel, and transfer of skills to new digital circuits
was substantial but less than perfect. Even after 56 hours of practice, the performance of subjects continued
to show improvements and had not started to level off. Where are the limits to continued improvements? A
study by Crossman[89] of workers producing cigars showed performance improving according to the power
law of practice for the first five years of employment. Thereafter performance improvements slow; factorspower law

of learning
0

cited for this slow down include approaching the speed limit of the equipment being used and the capability
of the musculature of the workers.

15.1 Knowledge
A distinction is often made between different kinds of knowledge. Declarative knowledge are the facts;developer

knowledge procedural knowledge are the skills (the ability to perform learned actions). Implicit memory is defined as

96 v 1.1 January 30, 2008

15 Expertise Introduction 0

memory without conscious awareness— it might be considered a kind of knowledge. 0 implicit learn-
ing

15.1.1 Declarative knowledge
This consists of knowledge about facts and events. For instance, the keywords used to denote the integer types declarative

knowledgeare char, short, int, and long. This kind of knowledge is usually explicit (we know what we know), but
there are situations where it can be implicit (we make use of knowledge that we are not aware of having[262]).
The coding guideline recommendations in this book have the form of declarative knowledge.

It is the connections and relationships between the individual facts, for instance the relative sizes of
the integer types, that differentiate experts from novices (who might know the same facts). This kind of
knowledge is rather like web pages on the Internet; the links between different pages corresponding to the
connections between facts made by experts. Learning a subject is more about organizing information and
creating connections between different items than it is about remembering information in a rote-like fashion.

This was demonstrated in a study by McKeithen, Reitman, Ruster, and Hirtle,[287] who showed that
developers with greater experience with a language organized their knowledge of language keywords in a
more structured fashion. Education can provide the list of facts, it is experience that provides the connections
between them.

The term knowledge base is sometimes used to describe a collection of information and links about a
given topic. The C Standard document is a knowledge base. Your author has a C knowledge base in his head,
as do you the reader. This book is another knowledge base dealing with C. The difference between this book
and the C Standard document is that it contains significantly more explicit links connecting items, and it also
contains information on how the language is commonly implemented and used.

15.1.2 Procedural knowledge
This consists of knowledge about how to perform a task; it is often implicit. procedural

knowledgeKnowledge can start off by being purely declarative and, through extensive practice, becomes procedural;
for instance, the process of learning to drive a car. An experiment by Sweller, Mawer, and Ward[441] showed
how subjects’ behavior during mathematical problem solving changed as they became more proficient. This
suggested that some aspects of what they were doing had been proceduralized.

Some of the aspects of writing source code that can become proceduralized are discussed elsewhere. 0 developer
flow

0 automatiza-
tion15.2 Education

What effect does education have on people who go on to become software developers? developer
education

Page 206 of Hol-
land et al.[172]

Education should not be thought of as replacing the rules that people use for understanding the world but rather
as introducing new rules that enter into competition with the old ones. People reliably distort the new rules in
the direction of the old ones, or ignore them altogether except in the highly specific domains in which they were
taught.

Education can be thought of as trying to do two things (of interest to us here)— teach students skills
(procedural knowledge) and providing them with information, considered important in the relevant field,
to memorize (declarative knowledge). To what extent does education in subjects not related to software
development affect a developer’s ability to write software?

Some subjects that are taught to students are claimed to teach general reasoning skills; for instance,
philosophy and logic. There are also subjects that require students to use specific reasoning skills, for
instance statistics requires students to think probabilistically. Does attending courses on these subjects
actually have any measurable effect on students’ capabilities, other than being able to answer questions
in an exam. That is, having acquired some skill in using a particular system of reasoning, do students
apply it outside of the domain in which they learnt it? Existing studies have supplied a No answer to this
question.[289, 323] This No was even found to apply to specific skills; for instance, statistics (unless the problem
explicitly involves statistical thinking within the applicable domain) and logic.[68]

A study by Lehman, Lempert, and Nisbett[252] measured changes in students’ statistical, methodological,
and conditional reasoning abilities (about everyday-life events) between their first and third years. They

January 30, 2008 v 1.1 97

Introduction 15 Expertise0

found that both psychology and medical training produced large effects on statistical and methodological
reasoning, while psychology, medical, and law training produced effects on the ability to perform conditional
reasoning. Training in chemistry had no affect on the types of reasoning studied. An examination of the skills
taught to students studying in these fields showed that they correlated with improvements in the specific
types of reasoning abilities measured. The extent to which these reasoning skills transferred to situations
that were not everyday-life events was not measured. Many studies have found that in general people do notexpertise

transfer to an-
other domain

0

transfer what they have learned from one domain to another.
It might be said that passing through the various stages of the education process is more like a filter than a

learning exercise. Those that already have the abilities being the ones that succeed.[471] A well-argued call to
arms to improve students’ general reasoning skills, through education, is provided by van Gelder.[470]

Good education aims to provide students with an overview of a subject, listing the principles and major
issues involved; there may be specific cases covered by way of examples. Software development does require
knowledge of general principles, but most of the work involves a lot of specific details: specific to the
application, the language used, and any existing source code, while developers may have been introduced to
the C language as part of their education. The amount of exposure is unlikely to have been sufficient for the
building of any significant knowledge base about the language.

15.2.1 Learned skills
Education provides students with learned knowledge, which relates to the title of this subsection learned
skills. Learning a skill takes practice. Time spent by students during formal education practicing theirdeveloper

expertise
0

programming skills is likely to total less than 60 hours. Six months into their first development job they
could very well have more than 600 hours of experience. Although students are unlikely to complete their
education with a lot of programming experience, they are likely to continue using the programming beliefs
and practices they have acquired. It is not the intent of this book to decry the general lack of good software
development training, but simply to point out that many developers have not had the opportunity to acquire
good habits, making the use of coding guidelines even more essential.

Can students be taught in a way that improves their general reasoning skills? This question is not directly
relevant to the subject of this book; but given the previous discussion, it is one that many developers will be
asking. Based on the limited researched carried out to date the answer seems to be yes. Learning requires
intense, quality practice. This would be very expensive to provide using human teachers, and researchers
are looking at automating some of the process. Several automated training aids have been produced to help
improve students’ reasoning ability and some seem to have a measurable affect.[471]

15.2.2 Cultural skills
Cultural skills include the use of language and category formation. Nisbett and Norenzayan[326] provide

developer
language

and culture
catego-
rization

cultural differences

0 an overview of culture and cognition. A more practical guide to cultural differences and communicating
with people from different cultures, from the perspective of US culture, is provided by Wise, Hannaman,
Kozumplik, Franke, and Leaver.[495]

15.3 Creating experts
To become an expert a person needs motivation, time, economic resources, an established body of knowledge
to learn from, and teachers to guide.

One motivation is to be the best, as in chess and violin playing. This creates the need to practice as much
as others at that level. Ericsson found[113] that four hours per day was the maximum concentrated training
that people could sustain without leading to exhaustion and burnout. If this is the level of commitment, over
a 10-year period, that those at the top have undertaken, then anybody wishing to become their equal will have
to be equally committed. The quantity of practice needed to equal expert performance in less competitive
fields may be less. One should ask of an expert whether they attained that title because they are simply as
good as the best, or because their performance is significantly better than non-experts.

In many domains people start young, between three and eight in some cases,[113] their parents’ interest
being critical in providing equipment, transport to practice sessions, and the general environment in which to

98 v 1.1 January 30, 2008

15 Expertise Introduction 0

study.
An established body of knowledge to learn from requires that the domain itself be in existence and

relatively stable for a long period of time. The availability of teachers requires a domain that has existed long
enough for them to have come up through the ranks; and one where there are sufficient people interested in it
that it is possible to make as least as much from teaching as from performing the task.

The research found that domains in which the performance of experts was not significantly greater than
non-experts lacked one or more of these characteristics.

15.3.1 Transfer of expertise to different domains
Research has shown that expertise within one domain does not confer any additional skills within another expertise

transfer to an-
other domaindomain.[11] This finding has been duplicated for experts in real-world domains, such as chess, and in

laboratory-created situations. In one series of experiments, subjects who had practiced the learning of
sequences of digits (after 50–100 hours of practice they could commit to memory, and recall later, sequences
containing more than 20 digits) could not transfer their expertise to learning sequences of other items.[66]

15.4 Expertise as mental set
Software development is a new field that is still evolving at a rapid rate. Most of the fields in which expert
performance has been studied are much older, with accepted bodies of knowledge, established traditions, and
methods of teaching.

Sometimes knowledge associated with software development does not change wholesale. There can be
small changes within a given domain; for instance, the move from K&R C to ISO C.

In a series of experiments Wiley,[492] showed that in some cases non-experts could outperform experts
within their domain. She showed that an expert’s domain knowledge can act as a mental set that limits the
search for a solution; the expert becomes fixated within the domain. Also, in cases where a new task does not
fit the pattern of highly proceduralized behaviors of an expert, a novice’s performance may be higher.

15.5 Software development expertise
Given the observation that in some domains the acknowledged experts do not perform significantly better than software de-

velopment
expertisenon-experts, we need to ask if it is possible that any significant performance difference could exist in software

development. Stewart and Lusk[432] proposed a model of performance that involves seven components. The
following discussion breaks down expertise in software development into five major areas.

1. Knowledge (declarative) of application domain. Although there are acknowledged experts in a wide
variety of established application domains, there are also domains that are new and still evolving
rapidly. The use to which application expertise, if it exists, can be put varies from high-level design
to low-level algorithmic issues (i.e., knowing that certain cases are rare in practice when tuning a
time-critical section of code).

2. Knowledge (declarative) of algorithms and general coding techniques. There exists a large body of
well-established, easily accessible, published literature about algorithms. While some books dealing
with general coding techniques have been published, they are usually limited to specific languages,
application domains (e.g., embedded systems), and often particular language implementations. An
important issue is the rigor with which some of the coding techniques have been verified; it often
leaves a lot to be desired, including the level of expertise of the author.

3. Knowledge (declarative) of programming language. The C programming language is regarded as
an established language. Whether 25 years is sufficient for a programming language to achieve the
status of being established, as measured by other domains, is an open question. There is a definitive
document, the ISO Standard, that specifies the language. However, the sales volume of this document
has been extremely low, and most of the authors of books claiming to teach C do not appear to have
read the standard. Given this background, we cannot expect any established community of expertise in
the C language to be very large.

January 30, 2008 v 1.1 99

Introduction 15 Expertise0

4. Ability (procedural knowledge) to comprehend and write language statements and declarations that
implement algorithms. Procedural knowledge is acquired through practice. While university students
may have had access to computers since the 1970s, access for younger people did not start to occur
until the mid 1980s. It is possible for developers to have had 25 years of software development practice.

5. Development environment. The development environment in which people have to work is constantly
changing. New versions of operating systems are being introduced every few years; new technologies
are being created and old ones are made obsolete. The need to keep up with development is a drain on
resources, both in intellectual effort and in time. An environment in which there is a rapid turnover in
applicable knowledge and skills counts against the creation of expertise.

Although the information and equipment needed to achieve a high-level of expertise might be available, there
are several components missing. The motivation to become the best software developer may exist in some
individuals, but there is no recognized measure of what best means. Without the measuring and scoring of
performances it is not possible for people to monitor their progress, or for their efforts to be rewarded. While
there is a demand for teachers, it is possible for those with even a modicum of ability to make substantial
amounts of money doing (not teaching) development work. The incentives for good teachers are very poor.

Given this situation we would not expect to find large performance differences in software developers
through training. If training is insufficient to significantly differentiate developers the only other factor is
individual ability. It is certainly your author’s experience— individual ability is a significant factor in a
developer’s performance.

Until the rate of change in general software development slows down, and the demand for developers falls
below the number of competent people available, it is likely that ability will continue to the dominant factor
(over training) in developer performance.

15.6 Software developer expertise
Having looked at expertise in general and the potential of the software development domain to have experts,developer

expertise we need to ask how expertise might be measured in people who develop software. Unfortunately, there are no
reliable methods for measuring software development expertise currently available. However, based on the
previously discussed issues, we can isolate the following technical competencies (social competencies[320]

are not covered here, although they are among the skills sought by employers,[30] and software developers
have their own opinions[255, 421]):

• Knowledge (declarative) of application domain.
• Knowledge (declarative) of algorithms and general coding techniques.
• Knowledge (declarative) of programming languages.
• Cognitive ability (procedural knowledge) to comprehend and write language statements and declara-

tions that implement algorithms (a specialized form of general analytical and conceptual thinking).
• Knowledge (metacognitive) about knowledge (i.e., judging the quality and quantity of one’s expertise).

Your author has firsthand experience of people with expertise individually within each of these components,
while being non-experts in all of the others. People with application-domain expertise and little programming
knowledge or skill are relatively common. Your author once implemented the semantics phase of a CHILL
(Communications HIgh Level Language) compiler and acquired expert knowledge in the semantics of that
language. One day he was shocked to find he could not write a CHILL program without reference to some
existing source code (to refresh his memory of general program syntax); he had acquired an extensive
knowledge based of the semantics of the language, but did not have the procedural knowledge needed to
write a program (the compiler was written in another language).0.6

0.6As a compiler writer, your author is sometimes asked to help fix problems in programs written in languages he has never seen
before (how can one be so expert and not know every language?). He now claims to be an expert at comprehending programs written in
unknown languages for application domains he knows nothing about (he is helped by the fact that few languages have any truly unique
constructs).

100 v 1.1 January 30, 2008

15 Expertise Introduction 0

A developer’s knowledge of an application domain can only be measured using the norms of that domain.
One major problem associated with measuring overall developer expertise is caused by the fact that different
developers are likely to be working within different domains. This makes it difficult to cross correlate
measurements.

A study at Bell Labs[95] showed that developers who had worked on previous releases of a project were
much more productive than developers new to a project. They divided time spent by developers into discovery
time (finding out information) and work time (doing useful work). New project members spent 60% to 80%
of their time in discovery and 20% to 40% doing useful work. Developers experienced with the application
spent 20% of their time in discovery and 80% doing useful work. The results showed a dramatic increase
in efficiency (useful work divided by total effort) from having been involved in one project cycle and less
dramatic an increase from having been involved in more than one release cycle. The study did not attempt to
separate out the kinds of information being sought during discovery.

Another study at Bell Labs[305] found that the probability of a fault being introduced into an application,
during an update, correlated with the experience of the developer doing the work. More experienced
developers seemed to have acquired some form of expertise in an application that meant they were less likely
to introduce a fault into it.

A study of development and maintenance costs of programs written in C and Ada[504] found no correlation
between salary grade (or employee rating) and rate of bug fix/add feature rate.

Your author’s experience is that developers’ general knowledge of algorithms (in terms of knowing those
published in well-known text-books) is poor. There is still a strongly held view, by developers, that it is
permissible for them to invent their own ways of doing things. This issue is only of immediate concern to
these coding guidelines as part of the widely held, developers’, belief that they should be given a free hand to
write source as they see fit.

There is a group of people who might be expected to be experts in a particular programming languages—
those who have written a compiler for it (or to be exact those who implemented the semantics phase of
the compiler, anybody working on others parts [e.g., code generation] does not need to acquire detailed
knowledge of the language semantics). Your author knows a few people who are C language experts and
have not written a compiler for that language. Based on your author’s experience of implementing several
compilers, the amount of study needed to be rated as an expert in one computer language is approximately 3
to 4 hours per day (not even compiler writers get to study the language for every hour of the working day;
there are always other things that need to be attended to) for a year. During that period, every sentence in the
language specification will be read and analyzed in detail several times, often in discussion with colleagues.
Generally developer knowledge of the language they write in is limited to the subset they learned during
initial training, perhaps with some additional constructs learned while reading other developers’ source or
talking to other members of a project. The behavior of the particular compiler they use also colors their view
of those constructs.

Expertise in the act of comprehending and writing software is hard to separate from knowledge of the
application domain. There is rarely any need to understand a program without reference to the application
domain it was written for. When computers were centrally controlled, before the arrival of desktop computers,
many organizations offered a programming support group. These support groups were places where customers
of the central computer (usually employees of the company or staff at a university) could take programs they
were experiencing problems with. The staff of such support groups were presented with a range of different
programs for which they usually had little application-domain knowledge. This environment was ideal for
developing program comprehension skills without the need for application knowledge (your author used to
take pride in knowing as little as possible about the application while debugging the presented programs).
Such support groups have now been reduced to helping customers solve problems with packaged software.
Environments in which pure program-understanding skills can be learned now seem to have vanished.

What developers do is discussed elsewhere. An expert developer could be defined as a person who is 0 developers
what do they do?

able to perform these tasks better than the majority of their peers. Such a definition is open-ended (how is

January 30, 2008 v 1.1 101

Introduction 15 Expertise0

better defined for these tasks?) and difficult to measure. In practice, it is productivity that is the sought-after
attribute in developers.productivity

developer
0

Some studies have looked at how developers differ (which need not be the same as measuring expertise),
including their:

• ability to remember more about source code they have seen,
developers

organized
knowledge

0

• personality differences,developer
personality

0

• knowledge of the computer language used, and

• ability to estimate the effort needed to implement the specified functionality.[206]

A study by Jørgensen and Sjøberg[207] looked at maintenance tasks (median effort 16-work hours). They
found that developers’ skill in predicting maintenance problems improved during their first two years on the
job; thereafter there was no correlation between increased experience (average of 7.7 years’ development
experience, 3.4 years on maintenance of the application) and increased skill. They attributed this lack of
improvement in skill to a lack of learning opportunities (in the sense of deliberate practice and feedback on
the quality of their work).

Job advertisements often specify that a minimum number of years of experience is required. Number of
years is known not to be a measure of expertise, but it provides some degree of comfort that a person has had
to deal with many of the problems that might occur within a given domain.

15.6.1 Is software expertise worth acquiring?
Most developers are not professional programmers any more than they are professional typists. Reading and
writing software is one aspect of their job. The various demands on their time is such that most spend a small
portion of their time writing software. Developers need to balance the cost of spending time becoming more
skillful programmers against the benefits of possessing that skill. Experience has shown that software can
be written by relatively unskilled developers. One consequence of this is that few developers ever become
experts in any computer language.

When estimating benefit over a relatively short period of time, time spent learning more about the
application domain frequently has a greater return than honing programming skills.

15.7 Coding style
As an Englishman, your author can listen to somebody talking and tell if they are French, German, Australian,coding guidelines

coding style or one of many other nationalities (and sometimes what part of England they were brought up in). From
what they say, I might make an educated guess about their educational level. From their use of words like
cool, groovy, and so on, I might guess age and past influences (young or ageing hippie).

Source code written by an experienced developer sometimes has a recognizable style. Your author cansource code
accent

often tell if a developer’s previous language was Fortran, Pascal, or Basic. But he cannot tell if their previous
language was Lisp or APL (anymore than he can distinguish regional US accents, nor can many US citizens
tell the difference among an English, Scottish, Irish, or Australian accent), because he has not had enough
exposure to those languages.

Is coding style a form of expertise (a coherent framework that developers use to express their thoughts),
or is it a ragbag of habits that developers happen to have? Programs have been written that can accurately
determine the authorship of C source code (success rates of 73% have been reported[236]). These experiments
used, in part, source code written by people new to software development (i.e., students). Later work using
neural networks[237] was able to get the failure rate down to 2%. That it was possible to distinguish programs
written by very inexperienced developers suggests that style might simply be a ragbag of habits (these
developers not having had time to put together a coherent way of writing source).

The styles used by inexperienced developers can even be detected after an attempt has been made to hide
the original authorship of the source. Plagiarism is a persistent problem in many universities’ programming
courses and several tools have been produced that automatically detect source code plagiarisms.[365, 477]

102 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

One way for a developer to show mastery of coding styles would be to have the ability to write source
using a variety of different styles, perhaps even imitating the style of others. The existing author analysis
tools are being used to verify that different, recognizable styles were being used.

It was once thought (and still is by some people) that there is a correct way to speak. Received Pronuncia-
tion (as spoken on the BBC many years ago) was once promoted as correct usage within the UK.

Similarly, many people believe that source code can be written in a good style or a bad style. A considerable
amount of time has been, and will probably continue to be, spent discussing this issue. Your authors’ position
is the following:

• Identifiable source code styles exist.

• It is possible for people to learn new coding styles.

• It is very difficult to explain style to non-expert developers.

• Learning a new style is sufficiently time-consuming, and the benefits are likely to be sufficiently small,
that a developer is best advised to invest effort elsewhere.

Students of English literature learn how to recognize writing styles. There are many more important issues
that developers need to learn before they reach the stage where learning about stylistic issues becomes
worthwhile.

The phrase coding guidelines and coding style are sometimes thought of, by developers of as being
synonymous. This unfortunate situation has led to coding guidelines acquiring a poor reputation. While
recognizing the coding style does exist, they are not the subject of these coding guidelines. The term existing

0 coding
guidelines
introductionpractice refers to the kinds of constructs often found in existing programs. Existing practice is dealt with as

an issue in its own right, independent of any concept of style.

16 Human characteristics
Humans are not ideal machines, an assertion that may sound obvious. However, while imperfections in human char-

acteristicsphysical characteristics are accepted, any suggestion that the mind does not operate according to the laws of
mathematical logic is rarely treated in the same forgiving way. For instance, optical illusions are accepted as
curious anomalies of the eye/brain system; there is no rush to conclude that human eyesight is faulty.

Optical illusions are often the result of preferential biases in the processing of visual inputs that, in most
cases, are beneficial (in that they simplify the processing of ecologically common inputs). In Figure 0.19,
which of the two squares indicated by the arrows is the brighter one? Readers can verify that the indicated
squares have exactly the same grayscale level. Use a piece of paper containing two holes, that display only
the two squares pointed to.

This effect is not caused by low-level processing, by the brain, of the input from the optic nerve; it is
caused by high-level processing of the scene (recognizing the recurring pattern and that some squares are
within a shadow). Anomalies caused by this high-level processing are not limited to grayscales. The brain is
thought to have specific areas dedicated to the processing of faces. The, so-called, Thatcher illusion is an
example of this special processing of faces. The two faces in Figure 0.20 look very different; turn the page
upside down and they look almost identical.

Music is another input stimulus that depends on specific sensory input/brain affects occurring. There is no
claim that humans cannot hear properly, or that they should listen to music derived purely from mathematical
principles.

Studies have uncovered situations where the behavior of human cognitive processes does not correspond
to some generally accepted norm, such as Bayesian inference. However, it cannot be assumed that cognitive
limitations are an adaption to handle the physical limitations of the brain. There is evidence to suggest that 0 evolutionary

psychology
some of these so-called cognitive limitations provide near optimal solutions for some real-world problems.[169]

The ability to read, write, and perform complex mathematical reasoning are very recent (compared to
several million years of evolution) cognitive skill requirements. Furthermore, there is no evidence to suggest

January 30, 2008 v 1.1 103

Introduction 16 Human characteristics0

Figure 0.19: Checker shadow (by Edward Adelson). Which of the two squares in-
dicated by the arrows is the brighter one (following inverted text gives answer)?
Both squares reflect the same amount of light (this can be verified by
covering all of squares except the two indicated), but the human visual system assigns a relative brightness that is
consistent with the checker pattern.

Figure 0.20: The Thatcher illusion. With permission from Thompson.[453] The facial images look very similar when viewed in
one orientation and very different when viewed in another (turn page upside down).

104 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

that possessing these skills improves the chances of a person passing on their genes to subsequent generations
(in fact one recent trend suggests otherwise[408]). So we should not expect human cognitive processes to be
tuned for performing these activities.

Table 0.13: Cognitive anomalies. Adapted from McFadden.[285]

Effect Description

CONTEXT
Anchoring Judgments are influenced by quantitative cues contained in the statement of the

decision task
Context Prior choices and available options in the decision task influence perception and

motivation
Framing Selection between mathematically equivalent solutions to a problem depends on how

their outcome is framed.
Prominence The format in which a decision task is stated influences the weight given to different

aspects
REFERENCE POINT
Risk asymmetry Subjects show risk-aversion for gains, risk-preference for losses, and weigh losses

more heavily
Reference point Choices are evaluated in terms of changes from an endowment or status quo point
Endowment Possessed goods are valued more highly than those not possessed; once a function

has been written
developers are loath to
throw it away and start
again
AVAILABILITY
Availability Responses rely too heavily on readily retrievable information and too little on back-

ground information
Certainty Sure outcomes are given more weight than uncertain outcomes
Experience Personal history is favored relative to alternatives not experienced
Focal Quantitative information is retrieved or reported categorically
Isolation The elements of a multiple-part or multi-stage lottery are evaluated separately
Primacy and Recency Initial and recently experienced events are the most easily recalled
Regression Idiosyncratic causes are attached to past fluctuations, and regression to the mean is

underestimated
Representativeness High conditional probabilities induce overestimates of unconditional probabilities
Segregation Lotteries are decomposed into a sure outcome and a gamble relative to this sure

outcome
SUPERSTITION
Credulity Evidence that supports patterns and causal explanations for coincidences is accepted

too readily
Disjunctive Consumers fail to reason through or accept the logical consequences of actions
Superstition Causal structures are attached to coincidences, and "quasi-magical" powers to

opponents
Suspicion Consumers mistrust offers and question the motives of opponents, particularly in

unfamiliar situations
PROCESS
Rule-Driven Behavior is guided by principles, analogies, and exemplars rather than utilitarian

calculus
Process Evaluation of outcomes is sensitive to process and change
Temporal Time discounting is temporally inconsistent, with short delays discounted too sharply

relative to long delays
PROJECTION
Misrepresentation Subjects may misrepresent judgments for real or perceived strategic advantage
Projection Judgments are altered to reinforce internally or project to others a self-image

Table 0.13 lists some of the cognitive anomalies (difference between human behavior and some idealized
norm) applicable to writing software. There are other cognitive anomalies, some of which may also be
applicable, and others that have limited applicability; for instance, writing software is a private, not a social
activity. Cognitive anomalies relating to herd behavior and conformity to social norms are unlikely to be of

January 30, 2008 v 1.1 105

Introduction 16 Human characteristics0

interest.

16.1 Physical characteristics
Before moving on to the main theme of this discussion, something needs to be said about physical character-developer

physical char-
acteristics istics.

The brain is the processor that the software of the mind executes on. Just as silicon-based processors have
special units that software can make use of (e.g., floating point), the brain appears to have special areas that
perform specific functions.[348] This book treats the workings of the brain/mind combination as a black box.
We are only interested in the outputs, not the inner workings (brain-imaging technology has not yet reached
the stage where we can deduce functionality by watching the signals travelling along neurons).

Eyes are the primary information-gathering sensors for reading and writing software. A lot of research has
been undertaken on how the eyes operate and interface with the brain.[334] Use of other information-gathering
sensors has been proposed, hearing being the most common (both spoken and musical[480]). These are rarely
used in practice, and they are not discussed further in this book.

Hands/fingers are the primary output-generation mechanism. A lot of research on the operation of limbs
has been undertaken. The impact of typing on error rate is discussed elsewhere.typing

mistakes
Developers are assumed to be physically mature (we do not deal with code written by children or

adolescents) and not to have any physical (e.g., the impact of dyslexia on reading source code is not known;
another unknown is the impact of deafness on a developer’s ability to abbreviate identifiers based on their
sound) or psychiatric problems.

Issues such as genetic differences (e.g., male vs. female[359]) or physical changes in the brain caused by
repeated use of some functional unit (e.g., changes in the hippocampi of taxi drivers[276]) are not considered
here.

16.2 Mental characteristics
This section provides an overview of those mental characteristics that might be considered important indeveloper

mental charac-
teristics reading and writing software. Memory, particularly short-term memory, is an essential ability. It might

memory
developer

0
almost be covered under physical characteristics, but knowledge of its workings has not quite yet reached that
level of understanding. An overview of the characteristics of memory is given in the following subsection.
The consequences of these characteristics are discussed throughout the book.

The idealization of developers aspiring to be omnipotent logicians gets in the way of realistically approach-
ing the subject of how best to make use of the abilities of the human mind. Completely rational, logical, and
calculating thought may be considered to be the ideal tools for software development, but they are not what
people have available in their heads. Builders of bridges do not bemoan the lack of unbreakable materials
available to them, they have learned how to work within the limitations of the materials available. This same
approach is taken in this book, work with what is available.

This overview is intended to provide background rationale for the selection of, some, coding guidelines.
In some cases, this results in recommendations against the use of constructs that people are likely to have
problems processing correctly. In other cases this results in recommendations to do things in a particular way.
These recommendations could be based on, for instance, capacity limitations, biases/heuristics (depending
on the point of view), or some other cognitive factors.

Some commentators recommend that ideal developer characteristics should be promoted (such ideals are
often accompanied by a list of tips suggesting activities to perform to help achieve these characteristics,
rather like pumping iron to build muscle). This book contains no exhortations to try harder, or tips on how to
become better developers through mental exercises. In this book developers are taken as they are, not some
idealized vision of how they should be.

Hopefully the reader will recognize some of the characteristics described here in themselves. The way
forward is to learn to deal with these characteristics, not to try to change what could turn out to be intrinsic
properties of the human brain/mind.

Software development is not the only profession for which the perceived attributes of practitioners do not

106 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

correspond to reality. Darley and Batson[91] performed a study in which they asked subjects (theological
seminary students) to walk across campus to deliver a sermon. Some of the subjects were told that they
were late and the audience was waiting, the remainder were not told this. Their journey took them past a
victim moaning for help in a doorway. Only 10% of subjects who thought they were late stopped to help
the victim; of the other subjects 63% stopped to help. These results do not match the generally perceived
behavior pattern of theological seminary students.

Most organizations do not attempt to measure mental characteristics in developer job applicants; unlike
many other jobs for which individual performance can be an important consideration. Whether this is because
of an existing culture of not measuring, lack of reliable measuring procedures, or fear of frightening off
prospective employees is not known.

16.2.1 Computational power of the brain
One commonly used method of measuring the performance of silicon-based processors is to quote the number developer

computational
powerof instructions (measured in millions) they can execute in a second. This is known to be an inaccurate

measure, but it provides an estimate.
The brain might simply be a very large neural net, so there will be no instructions to count as such.

Merkle[291] used various approaches to estimate the number of synaptic operations per second; the followings
figures are taken from his article:

• Multiplying the number of synapses (1015) by their speed of operation (about 10 impulses/second)
gives 1016 synapse operations per second.

• The retina of the eye performs an estimated 1010 analog add operations per second. The brain contains
102 to 104 times as many nerve cells as the retina, suggesting that it can perform 1012 to 1014 operations
per second.

• A total brain power dissipation of 25 watts (an estimated 10 watts of useful work) and an estimated
energy consumption of 5×10−15 joules for the switching of a nerve cell membrane provides an upper
limit of 2×1015 operations per second.

A synapse switching on and off is rather like a transistor switching on and off. They both need to be connected
to other switches to create a larger functional unit. It is not known how many synapses are used to create
functional units in the brain, or even what those functional units might be. The distance between synapses
is approximately 1 mm. Simply sending a signal from one part of the brain to another part requires many
synaptic operations, for instance, to travel from the front to the rear of the brain requires at least 100 synaptic
operations to propagate the signal. So the number of synaptic operations per high-level, functional operation
is likely to be high. Silicon-based processors can contain millions of transistors. The potential number
of transistor-switching operations per second might be greater than 1014, but the number of instructions
executed is significantly smaller.

Although there have been studies of the information-processing capacity of the brain (e.g., visual atten-
tion,[478] storage rate into long-term memory,[243] and correlations between biological factors and intelli-
gence[472]), we are a long way from being able to deduce the likely work rates of the components of the
brain used during code comprehension. The issue of overloading the computational resources of the brain is
discussed elsewhere. 0 cognitive

effort
There are several executable models of how various aspects of human cognitive processes operate. The

ACT-R model[13] has been applied to a wide range of problems, including learning, the visual interface,
perception and action, cognitive arithmetic, and various deduction tasks.

Developers are familiar with the idea that a more powerful processor is likely to execute a program more
quickly than a less powerful one. Experience shows that some minds are quicker at solving some problems
than other minds and other problems (a correlation between what is known as inspection time and IQ has
been found[97]). For these coding guidelines, speed of mental processing is not a problem in itself. The
problem of limited processing resources operating in a time-constrained environment, leading to errors being

January 30, 2008 v 1.1 107

Introduction 16 Human characteristics0

General
Intelligence

Perceptual
Speed

Crystallized
Intelligence

Knowledge
and

Achievement

Number Computation
RT and Other Elementary Cognitive Tasks

Stroop
Clerical Speed
Digit Symbol

Verbal Comprehension
Lexical Knowledge

Reading Comprehension
Reading Speed

Cloze
Spelling

Phonetic Coding
Grammatical Sensitivity

Foreign Language
Communication

Listening
Oral Production

Oral Style
Writing

General School Achievement
Verbal Information and Knowledge

Information and Knowledge, Math and Science
Technical and Mechanical Knowledge

Knowledge of Behavioral Content

Ideational
Fluency

Learning
and

Memory

Fluid
Intelligence

Visual
Perception

Sequential Reasoning
Inductive Reasoning

Quantitative Reasoning
Piagetian Reasoning

Ideational Fluency
Naming Facility

Expression Fluency
Word Fluency

Creativity
Figural Fluency

Figural Flexibility

Memory Span
Associative Memory
Free Recall Memory
Meaningful Memory

Visual Memory

Visualization
Spatial Relations
Closure Speed

Closure Flexibility
Serial Perceptual Integration

Spatial Scanning
Imagery

Figure 0.21: A list of and structure of ability constructs. Adapted from Ackerman.[1]

made, could be handled if the errors were easily predicted. It is the fact that different developers have ranges
of different abilities that cause the practical problems. Developer A can have trouble understanding the kinds
of problems another developer, B, could have understanding the code he, A, has written. The problem is how
does a person, who finds a particular task easy, relate to the problems a person, who finds that task difficult,
will have?

The term intelligence is often associated with performance ability (to carry out some action in a given
amount of time). There has been a great deal of debate about what intelligence is, and how it can be measured.
Gardner[138] argues for the existence of at least six kinds of intelligence— bodily kinesthetic, linguistic,
mathematical, musical, personal, and spatial. Studies have shown that there can be dramatic differences
between subjects rated high and low in these intelligences (linguistic[148] and spatial[273]). Ackerman and
Heggestad[1] review the evidence for overlapping traits between intelligence, personality, and interests (see
Figure 0.21). An extensive series of tests carried out by Süß, Oberauer, Wittmann, Wilhelm, and Schulze[437]

found that intelligence was highly correlated to working memory capacity. The strongest relationship was
found for reasoning ability.

The failure of so-called intelligence tests to predict students’ job success on leaving college or university
is argued with devastating effect by McClelland,[282] who makes the point that the best testing is criterion
sampling (for developers this would involve testing those attributes that distinguish betterness in developers).
Until employers start to measure those employees who are involved in software development, and a theory
explaining how these relate to the problem of developing software-based applications is available, there is
little that can be said. At our current level of knowledge we can only say that developers having different
abilities may exhibit different failure modes when solving problems.

16.2.2 Memory
Studies have found that human memory might be divided into at least two (partially connected) systems,memory

developer commonly known as short-term memory (STM) and long-term memory (LTM). The extent to which STM
and LTM really are different memory systems, and not simply two ends of a continuum of memory properties,
continues to be researched and debated. Short-term memory tends to operate in terms of speech sounds and
have a very limited capacity; while long-term memory tends to be semantic- or episodic-based and is oftenmemory

episodic
0

treated as having an infinite capacity (a lifetime of memories is estimated to be represented in 109 bits;[243]

108 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

this figure takes forgetting into account).
There are two kinds of query that are made against the contents of memory. During recall a person

attempts to use information immediately available to them to access other information held in memory.
During recognition, a person decides whether they have an existing memory for information that is being
presented.

Much of the following discussion involves human memory performance with unchanging information.
Developers often have to deal with changing information (e.g., the source code may be changing on a daily
basis; the value of variables may be changing as developers run through the execution of code in their
heads). Human memory performance has some characteristics that are specific to dealing with changing
information.[87, 216] However, due to a lack of time and space, this aspect of developer memory performance
is not covered in any detail in this book.

As its name implies, STM is an area of memory that stores information for short periods of time. For Miller
7±2more than 100 years researchers have been investigating the properties of STM. Early researchers started by

trying to measure its capacity. A paper by Miller[296] entitled The magical number seven, plus or minus two:
Some limits on our capacity for processing information introduced the now-famous 7±2 rule. Things have
moved on, during the 47 years since the publication of his paper[204] (not that Miller ever proposed 7±2 as
the capacity of STM; he simply drew attention to the fact that this range of values fit the results of several
experiments).

Readers might like to try measuring their STM capacity. Any Chinese-speaking readers can try this memory
digit spanexercise twice, using the English and Chinese words for the digits.[174] Use of Chinese should enable readers

to apparently increase the capacity of STM (explanation follows). The digits in the outside margin can be
used. Slowly and steadily read the digits in a row, out loud. At the end of each row, close your eyes and try
to repeat the sequence of digits in the same order. If you make a mistake, go on to the next row. The point at
which you cannot correctly remember the digits in any two rows of a given length indicates your capacity
limit— the number of digits in the previous rows. 8704

2193
3172
57301
02943
73619
659420
402586
542173
6849173
7931684
3617458
27631508
81042963
07239861
578149306
293486701
721540683
5762083941
4093067215
9261835740

Sequences of
single digits
containing 4
to 10 digits.

Measuring working memory capacity using sequences of digits relies on several assumptions. It assumes
that working memory treats all items the same way (what if letters of the alphabet had been used instead),
and it also assumes that individual concepts are the unit of storage. Studies have shown that both these
assumptions are incorrect. What the preceding exercise measured was the amount of sound you could keep
in working memory. The sound used to represent digits in Chinese is shorter than in English. The use of
Chinese should enable readers to maintain information on more digits (average 9.9[175]) using the same
amount of sound storage. A reader using a language for which the sound of the digits is longer would be able
to maintain information on fewer digits (e.g., average 5.8 in Welsh[108]). The average for English is 6.6.

Studies have shown that performance on the digit span task is not a good predictor of performance on
other short- or long-term memory for items. However, a study by Martin[278] found that it did correlate with
memory for the temporal occurrence of events.

In the 1970s Baddeley asked what purpose short-term memory served. He reasoned that its purpose was to
act as a temporary area for activities such as mental arithmetic, reasoning, and problem solving. The model
of working memory he proposed is shown in Figure 0.22. There are three components, each with its own
independent temporary storage areas, each holding and using information in different ways.

What does the central executive do? It is assumed to be the system that handles attention, controlling the
phonological loop, the visuo-spatial sketch pad, and the interface to long-term memory. The central executive
needs to remember information while performing tasks such as text comprehension and problem solving.
The potential role of this central executive is discussed elsewhere.

0 attention
Visual information held in the visuo-spatial sketch pad decays very rapidly. Experiments have shown

visuo-spatial
memory

that people can recall four or five items immediately after they are presented with visual information, but
that this recall rate drops very quickly after a few seconds. From the source code reading point of view, the
visuo-spatial sketch pad is only operative for the source code currently being looked at.

While remembering digit sequences, readers may have noticed that the sounds used for them went around phonological loop

January 30, 2008 v 1.1 109

Introduction 16 Human characteristics0

Visuo-spatial

sketch pad

Central

executive

Phonological

loop

Figure 0.22: Model of working memory. Adapted from Baddeley.[25]

in their heads. Research has uncovered a system known as the phonological (or articulatory) loop. This kind
of memory can be thought of as being like a loop of tape. Sounds can be recorded onto this tape, overwriting
the previous contents, as it goes around and around. An example of the functioning of this loop can be found,
by trying to remember lists of words that vary by the length of time it takes to say them.

Table 0.14 contains lists of words; those at the top of the table contain a single syllable, those at the bottom
multiple syllables. Readers should have no problems remembering a sequence of five single-syllable words, a
sequence of five multi-syllable words should prove more difficult. As before, read each word slowly out loud.

Table 0.14: Words with either one or more than one syllable (and thus varying in the length of time taken to speak).

List 1 List 2 List 3 List 4 List 5

one cat card harm add
bank lift list bank mark
sit able inch view bar
kind held act fact few
look mean what time sum

ability basically encountered laboratory commitment
particular yesterday government acceptable minority
mathematical department financial university battery
categorize satisfied absolutely meaningful opportunity
inadequate beautiful together carefully accidental

It has been found that fast talkers have better short-term memory. The connection is the phonological loop.
Short-term memory is not limited by the number of items that can be held. The limit is the length of sound
this loop can store, about two seconds.[26] Faster talkers can represent more information in that two seconds
than those who do not talk as fast.

An analogy between phonological loop and a loop of tape in a tape recorder, suggests the possibility that it
might only be possible to extract information as it goes past a read-out point. A study by Sternberg[430] looked
at how information in the phonological loop could be accessed. Subjects were asked to hold a sequences of
digits, for instance 4185, in memory. They were then asked if a particular digit was in the sequence being
held. The time taken to respond yes/no was measured. Subjects were given sequences of different length to
hold in memory. The results showed that the larger the number of digits subjects had to hold in memory, the
longer it took them to reply (see Figure 0.23). The other result was that the time to respond was not affected
by whether the answer was yes or no. It might be expected that a yes answer would enable the search to be
terminated. This suggests that all digits were always being compared.

A study by Cavanagh[65] found that different kinds of information, held in memory, has different searchmemory
span response times (see Figure 0.24).

A good example of using the different components of working memory is mental arithmetic; for example,
multiply 23 by 15 without looking at this page. The numbers to be multiplied can be held in the phonological

110 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

Number of items

M
ea

n
re

ac
tio

n
tim

e
(m

se
c)

200

400

500

600

1 2 3 4 5 6

∆×
∆× ∆×

∆×
∆×

∆×

∆ Positive

Negative

× Mean

Figure 0.23: Judgment time (in milliseconds) as a function of the number of digits held in memory. Adapted from Sternberg.[430]

Reciprocal of memory span (item-1)

Pr
oc

es
si

ng
 ti

m
e

(m
se

c/
ite

m
)

20

40

60

80

0.1 0.2 0.3

• nonsense syllables
•random forms

• words•geometric shapes
• letters•colors

• digits

Figure 0.24: Judgment time (msec per item) as a function of the number of different items held in memory. Adapted from
Cavanagh[65]

loop, while information such as carries and which two digits to multiple next can be held within the central
executive. Now perform another multiplication, but this time look at the two numbers being multiplied (see
margin for values) while performing the multiplication. 26

12

Two numbers
to multiply.

While performing this calculation the visuo-spatial sketch pad can be used to hold some of the information,
the values being multiplied. This frees up the phonological loop to hold temporary results, while the central
executive holds positional information (used to decide which pairs of digits to look at). Carrying out a
multiplication while being able to look at the numbers being multiplied seems to require less cognitive effort.

Recent research on working memory has begun to question whether it does have a capacity limit. Many
studies have shown that people tend to organize items in memory in chunks of around four items. The role
that attention plays in working memory, or rather the need for working memory in support of attention, has
also come to the fore. It has been suggested that the focus of attention is capacity-limited, but that the other 0 attention

temporary storage areas are time-limited (without attention to rehearse them, they fade away). Cowan[88]

proposed the following:

1. The focus of attention is capacity-limited.

2. The limit in this focus averages about four chunks in normal adult humans.

3. No other mental faculties are capacity-limited, although some are limited by time and susceptibility to
interference.

January 30, 2008 v 1.1 111

Introduction 16 Human characteristics0

alpha beta

A

gamma

H

delta

L

epsilon

Q

zeta

U W

B I M R V X

C J N S Y

D K O T Z

E P

F

G

Figure 0.25: Semantic memory representation of alphabetic letters (the Greek names assigned to nodes by Klahr are used by
the search algorithm and are not actually held in memory). Readers may recognize the structure of a nursery rhyme in the letter
sequences. Derived from Klahr.[222]

4. Any information that is deliberately recalled, whether from a recent stimulus or from long-term
memory, is restricted to this limit in the focus of attention.

Other studies[328] have used the results from multiple tasks to distinguish the roles (e.g., storage, processing,
supervision, and coordination) of different components of working memory.

Chunking is a technique commonly used by people to help them remember information. A chunk is a smallmemory
chunking set of items (4±1 is seen in many studies) having a common, strong, association with each other (and a much

weaker one to items in other chunks). For instance, Wickelgren[490] found that people’s recall of telephone
numbers is optimal if numbers are grouped into chunks of three digits. An example from random-letter
sequences is fbicbsibmirs. The trigrams (fbi, cbs, ibm, irs) within this sequence of 12 letters are well-known
acronyms. A person who notices this association can use it to aid recall. Several theoretical analyses of
memory organizations have shown that chunking of items improves search efficiency ([101] optimal chunk
size 3–4), ([271] number items at which chunking becomes more efficient than a single list, 5–7).

An example of chunking of information is provided by a study performed by Klahr, Chase, and
Lovelace[222] who investigated how subjects stored letters of the alphabet in memory. Through a series of
time-to-respond measurements, where subjects were asked to name the letter that appeared immediately
before or after the presented probe letter, they proposed the alphabet-storage structure shown in Figure 0.25.
They also proposed two search algorithms that described the process subjects used to answer the before/after
question.

One of the characteristics of human memory is that it has knowledge of its own knowledge. People arefeeling of knowing

good at judging whether they know a piece of information or not, even if they are unable to recall that
information at a particular instant. Studies have found that so-called feeling of knowing is a good predictor of
subsequent recall of information (see Koriat[231] for a discussion and a model).

Several models of working memory are based on it only using a phonological representation of information.working memory
information repre-
sentation

phonology
Any semantic effects in short-term memory come from information recalled from long-term memory.
However, a few models of short-term memory do include a semantic representation of information (see
Miyake and Shah[303] for detailed descriptions of all the current models of working memory, and Baddeley
for a comprehensive review[23]).

A study by Hambrick and Engle[158] asked subjects to remember information relating to baseball games.
The subjects were either young, middle age, or old adult who knew little about baseball or were very
knowledgeable about baseball. The largest factor (54.9%) in the variance of subject performance was
expertise, with working memory capacity and age making up the difference.

Source code constructs differ in their likelihood of forming semantically meaningful chunks. For instance,

112 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

Figure 0.26: One of the two pairs are rotated copies of each other.

the ordering of a sequence of statements is often driven by the operations performed by those statements,
while the ordering of parameters is often arbitrary.

Declarative memory is a long-term memory (information may be held until a person dies) that has a huge memory
semanticmemory
episodic

capacity (its bounds are not yet known) and holds information on facts and events (declarative knowledge is
discussed elsewhere). Two components of declarative memory of interest to the discussion here are episodic 0 declarative

knowledgeand semantic memory. Episodic memory[24] is a past-oriented memory system concerned with remembering,
while semantic memory is a present-oriented memory system concerned with knowing.

Having worked on a program, a developer may remember particular sections of source code through their
interaction with it (e.g., deducing how it interacted with other source code, or inserting traces to print out
values of objects referenced in the code). After working on the same program for an extended period of time,
a developer is likely to be able to recall information about it without being able to remember exactly when
they learned that information.[166]

16.2.2.1 Visual manipulation

How are visual images held in the brain? Are they stored directly in some way (like a bitmap), or are they developer
visual ma-
nipulationheld using an abstract representation (e.g., a list of objects tagged with their spatial positions). A study

performed by Shepard[401] suggested the former. He showed subjects pairs of figures and asked them if
they were the same. Some pairs were different, while others were the same but had been rotated relative to
each other. The results showed a linear relationship between the angle of rotation (needed to verify that two
objects were the same) and the time taken to make a matching comparison. Readers might like to try there
mind at rotating the pairs of images in Figure 0.26 to find out if they are the same.

Kosslyn[233] performed a related experiment. Subjects were shown various pictures and asked questions
about them. One picture was of a boat. Subjects were asked a question about the front of the boat and then
asked a question about the rear of the boat. The response time, when the question shifted from the front to
the rear of the boat, was longer than when the question shifted from one about portholes to one about the rear.
It was as if subjects had to scan their image of the boat from one place to another to answer the questions.

A study by Presson and Montello[366] asked two groups of subjects to memorize the locations of objects in
a room. Both groups of subjects were then blindfolded and asked to point to various objects. The results
showed their performance to be reasonably fast and accurate. Subjects in the first group were then asked
to imagine rotating themselves 90°, then they were asked to point to various objects. The results showed
their performance to be much slower and less accurate. Subjects in the second group were asked to actually
rotate 90°; while still blindfolded, they were then asked to point to various objects. The results showed that
the performance of these subjects was as good as before they rotated. These results suggest that mentally
keeping track of the locations of objects, a task that many cognitive psychologists would suspect as being
cognitive and divorced from the body, is in fact strongly affected by literal body movements (this result is
more evidence for the embodied mind theory[476] of the human mind).

January 30, 2008 v 1.1 113

Introduction 16 Human characteristics0

Practice trials

Pr
op

or
tio

n
er

ro
rs

0.04

0.1

0.2

0.3

0.5

1 3 5 7

×

×

×

×

×

×
×

Practice trials

R
ec

al
l t

im
e

(s
ec

s)

0.5

1

1.4

1.8

2.3

1 3 5 7

×
×

× ×
× × ×

Figure 0.27: Proportion of errors (left) and time to recall (right) for recall of paired associate words (log scale). Based on
Anderson.[10]

16.2.2.2 Longer term memories
People can store large amounts of information for long periods of time in their long-term memory. Lan-
dauer[243] attempts to estimate the total amount of learned information in LTM. Information written to LTM
may not be held there for very long (storage), or it may be difficult to find (retrieval). This section discusses
storage and retrieval of information in LTM.

One of the earliest memory research results was that practicing an item, after it had been learned, improves
performance of recall at a later time (first published by Ebbinghaus in 1885, and reprinted several times
since[104]). The relationship between practice, P , and time, T , to recall has been found to follow a power law
T = aP b (where a and b are constants). This relationship has become known as the power law of learning.
A similar relationship has been found for error rates— more practice, fewer errors.

How is information stored in LTM? The brain contains neurons and synapses; information can only be
represented as some kind of change in their state. The term memory trace is used to describe this changed
state, representing the stored information. Accessing an information item in LTM is thought to increase the
strength of its associated memory trace (which could mean that a stronger signal is returned by subsequent
attempts at recall, or that the access path to that information is smoothed; nobody knows yet).

Practice is not the only way of improving recall. How an item has been studied, and its related associations,
can affect how well it is recalled later. The meaning of information to the person doing the learning, so-called
depth of processing, can affect their recall performance. Learning information that has a meaning is thought
to create more access methods to its storage location(s) in LTM.

The generation effect refers to the process whereby people are involved in the generation of the information
they need to remember. A study by Slamecka and Graf[418] asked subjects to generate a synonym, or rhyme,synonym

of a target word that began with a specified letter. For instance, generate a synonym for sea starting with the
letter o (e.g., ocean). The subjects who had to generate the associated word showed a 15% improvement in
recall, compared to subjects who had simply been asked to read the word pair (e.g., sea–ocean).

An example of the effect of additional, meaningful information was provided by a study by Bradshaw andmemory
information elabo-
ration Anderson.[51] Subjects were given information on famous people to remember. For instance, one group of

subjects was told:

Newton became emotionally unstable and insecure as a child

while other groups were given two additional facts to learn. These facts either elaborated on the first
sentence or were unrelated to it:

114 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

Newton became emotionally unstable and insecure as a child
Newton’s father died when he was born
Newton’s mother remarried and left him with his grandfather

After a delay of one week, subjects were tested on their ability to recall the target sentence. The results
showed that subjects percentage recall was higher when they had been given two additional sentences, that
elaborated on the first one (the performance of subjects given related sentences being better than those given
unrelated ones). There was no difference between subjects, when they were presented with the original
sentence and asked if they recognized it.

The preceding studies involved using information that had a verbal basis. A study by Standing, Conezio,
and Haber[428] involved asking subjects to remember visual information. The subjects were shown 2,560
photographs for 10 seconds each (640 per day over a 4-day period). On each day, one hour after being shown
the pictures, subjects were shown a random sample of 70 pairs of pictures (one of which was in the set of 640
seen earlier). They had to identify which of the pair they had seen before. Correct identification exceeded
90%. This and other studies have confirmed people’s very good memory for pictures.

16.2.2.3 Serial order
The order in which items or events occur is often important when comprehending source code. For instance, memory

serial liststhe ordering of a function’s parameters needs to be recalled when passing arguments, and the order of
statements within the source code of a function specifies an order of events during program execution. Two
effects are commonly seen in human memory recall performance:

1. The primacy effect refers to the better recall performance for items at the start of a list. primacy effect
memory

2. The recency effect refers to the better recall performance for items at the end of a list. recency effect
memory

A number of models have been proposed to explain people’s performance in the serial list recall task.
Henson[165] describes the start–end model.

16.2.2.4 Forgetting
While people are unhappy about the fact that they forget things, never forgetting anything may be worse. The forgetting

Russian mnemonist Shereshevskii found that his ability to remember everything, cluttered up his mind.[270]

Having many similar, not recently used, pieces of information matching during a memory search would be
counterproductive; forgetting appears to be a useful adaptation. For instance, a driver returning to a car wants
to know where it was last parked, not the location of all previous places where it was parked. Anderson
and Milson[14] proposed that human memory is optimized for information retrieval based on the statistical
properties of information use, in people’s everyday lives; their work was based on a model developed by
Burrell[57] (who investigated the pattern of book borrowings in several libraries; which were also having
items added to their stock). The rate at which the mind forgets seems to mirror the way that information
tends to lose its utility in the real world over time.

It has only recently been reliably established[387] that forgetting, like learning, follows a power law (the
results of some studies could be fitted using exponential functions). The general relationship between the
retention of information, R, and the time, T , since the last access has the form R = aD−b (where a and
b are constants). It is known as the power law of forgetting. The constant a depends on the amount of
initial learning. A study by Bahrick[28] (see Figure 0.28) looked at subjects’ retention of English–Spanish
vocabulary (the drop-off after 25 years may be due to physiological deterioration[11]).

The following are three theories of how forgetting occurs:

1. Memory traces simply fade away.
2. Memory traces are disrupted or obscured by newly formed memory traces created by new information

being added to memory.

January 30, 2008 v 1.1 115

Introduction 16 Human characteristics0

log (time + 1) in years

Te
st

 s
co

re

0

2

4

6

8

10

12

completion
1yr 2 mo

3yr 2 mo
5yr 9mo

9yr 6mo
14yr 7mo

25yr 1 mo
34yr 7mo

49yr 8mo

∆

×

∆

×

∆

×

∆

×

∆

×

∆

×

∆

×

∆

×

∆

×

five courses

three courses

one course

Figure 0.28: Effect of level of training on the retention of recognition of English–Spanish vocabulary. Adapted from Bahrick.[28]

3. The retrieval cues used to access memory traces are lost.

The process of learning new information is not independent of already-learned information. There can be
mutual inference between the two items of information. The interference of old information, caused by new
information, is known as retroactive interference. It is not yet known whether the later information weakens
the earlier information, or whether it is simply stronger and overshadows access to the earlier information.
The opposite effect of retroactive interference is proactive interference. In this case, past memories interfere
with more recent ones.

Table 0.15 and Table 0.16 (based on Anderson[12]) are examples of the word-pair association tests used
to investigate interference effects. Subjects are given a single pair of words to learn and are tested on that
pair only (in both tables, Subject 3 is the control). The notation A⇒B indicates that subjects have to learn
to respond with B when given the cue A. An example of a word-pair is sailor–tipsy. The Worse/Better
comparison is against the performance of the control subjects.

Table 0.15: Proactive inhibition. The third row indicates learning performance; the fifth row indicates recall performance, relative
to that of the control. Based on Anderson.[12]

Subject 1 Subject 2 Subject 3

Learn A⇒B Learn C⇒D Rest
Learn A⇒D Learn A⇒B Learn A⇒D
Worse Better
Test A⇒D Test A⇒D Test A⇒D
Worse Worse

Table 0.16: Retroactive inhibition. The fourth row indicates subject performance relative to that of the control. Based on
Anderson.[12]

Subject 1 Subject 2 Subject 3

Learn A⇒B Learn A⇒B Learn A⇒B
Learn A⇒D Learn C⇒D Rest
Test A⇒B Test A⇒B Test A⇒B
Much worse Worse

The general conclusion from the, many, study results is that interference occurs in both learning and recall

116 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

Minerals

Metals Stones

Rare Common Alloys Precious Masonary

Platinum
Silver
Gold

Aluminum
Copper
Lead
Iron

Bronze
Steel
Brass

Sapphire
Emerald
Diamond

Ruby

Limestone
Granite
Marble
Slate

Figure 0.29: Words organized according to their properties— the minerals conceptual hierarchy. Adapted from Bower, Clark,
Lesgold, and Winzenz.[49]

when there are multiple associations for the same item. The improvement in performance of subjects in the
second category, of proactive inhibition, is thought to occur because of a practice effect.

16.2.2.5 Organized knowledge
Information is not stored in people’s LTM in an unorganized form (for a detailed discussion, see[12]). This developers

organized
knowledgesection provides a brief discussion of the issues. More detailed discussions are provided elsewhere in the

identifier
memorabilityspecific cases that apply to reading and writing source code.

Whenever possible, the coding guidelines given in this book aim to take account of the abilities and
limitations that developers have. An example of how it is possible to use an ability of the mind (organizing
information in memory) to overcome a limitation (information held in LTM becoming inaccessible) is
provided by the following demonstration.

Readers might like to try remembering words presented in an organized form and as a simple list. Read
the words in Figure 0.29 out loud, slowly and steadily. Then try to recall as many as possible. Then repeat
the process using the words given below. It is likely that a greater number of words will be recalled from
the organized structure. The words in the second list could be placed into the same structure as the first list,
instead they appear in a random order.

pine elm pansy garden wild banyan plants
delphinium conifers dandelion redwood palm ash

violet daisy tropical chestnut flowers spruce lupin
buttercup trees deciduous mango willow rose

Familiarity with information being learned and recalled can also make a difference. Several studies
have shown that experts perform better than non-experts in remembering information within their domain
of expertise. For instance, McKeithen, Reitman, Ruster, and Hirtle[287] measured developers’ ability to
memorize program source code. Subjects were presented with two listings; one consisted of a sequence
of lines that made up a well-formed program, the other contained the same lines but the order in which
they appeared on the listing had been randomized. Experienced developers (more than 2,000 hr of general
programming and more than 400 hr experience with the language being used in the experiment) did a much
better job at recalling source lines from the listing that represented a well-formed program and inexperienced
developers. Both groups did equally well in recalling lines from the randomized listing. The experiments also
looked at how developers remembered lists of language keywords they were given. How the information was
organized was much more consistent across experienced developers than across inexperienced developers
(experienced developers also had a slightly deeper depth of information chunking, 2.26 vs. 1.88).

January 30, 2008 v 1.1 117

Introduction 16 Human characteristics0

16.2.2.6 Memory accuracy
Until recently experimental studies of memory have been dominated by a quantity-oriented approach.
Memory was seen as a storehouse of information and is evaluated in terms of how many items could be
successfully retrieved. The issue of accuracy of response was often ignored. This has started to change
and there has been a growing trend for studies to investigate accuracy.[232] Coding guidelines are much
more interested in factors that affect memory accuracy than those, for instance, affecting rate of recall.
Unfortunately, some of the memory studies described in this book do not include information on error rates.

16.2.2.7 Errors caused by memory overflow
Various studies have verified that limits on working memory can lead to an increase in a certain kind of errordeveloper errors

memory overflow when performing a complex task. Byrne and Bovair[58] looked at postcompletion errors (an example of this
error is leaving the original in the photocopy machine after making copies, or the ATM card in the machine
after withdrawing money) in complex tasks. A task is usually comprised of several goals that need to be
achieved. It is believed that people maintain these goals using a stack mechanism in working memory. Byrne
and Bovair were able to increase the probability of subjects making postcompletion errors in a task assigned
to them. They also built a performance model that predicted postcompletion errors that were consistent with
those seen in the experiments.

The possible impact of working memory capacity-limits in other tasks, related to reading and writing
source code, is discussed elsewhere. However, the complexity of carrying out studies involving workingconditional

statement
memory should not be underestimated. There can be unexpected interactions from many sources. A study
by Lemaire, Abdi, and Fayol[254] highlighted the complexity of trying to understand the affects of working
memory capacity limitations. The existing models of the performance of simple arithmetic operations,
involve an interrelated network in long-term memory (built during the learning of arithmetic facts, such as
the multiplication table, and reinforced by constant practice). Lemaire et al. wanted to show that simple
arithmetic also requires working memory resources.

To show that working memory resources were required, they attempted to overload those resources.
Subjects were required to perform another task at the same time as answering a question involving simple
arithmetic (e.g., 4 + 8 = 12, true or false?). The difficulty of the second task varied between experiments.
One required subjects to continuously say the word the, another had them continuously say the letters abcdef,
while the most difficult task required subjects to randomly generate letters from the set abcdef (this was
expected to overload the central executive system in working memory).

The interesting part of the results (apart from confirming the authors’ hypothesis that working memory
was involved in performing simple arithmetic) was how the performances varied depending on whether the
answer to the simple arithmetic question was true or false. The results showed that performance for problems
that were true was reduced when both the phonological loop and the central executive were overloaded, whilephonolog-

ical loop
0

performance on problems that were false was reduced when the central executive was overloaded.
A conditional expression requires that attention be paid to it if a developer wants to know under what set

of circumstances it is true or false. What working memory resources are needed to answer this question; does
keeping the names of identifiers in the phonological loop, or filling the visuo-spatial sketch pad (by looking
at the code containing the expression) increase the resources required; does the semantics associated with
identifiers or conditions affect performance? Your author does not know the answers to any of these questions
but suspects that these issues, and others, are part of the effort cost that needs to be paid in extracting facts
from source code.

16.2.2.8 Memory and code comprehension
As the results from the studies just described show, human memory is far from perfect. What can coding
guidelines do to try to minimize potential problems caused by these limitations? Some authors of other
coding guideline documents have obviously heard of Miller’s[296] 7±2 paper (although few seem to have read
it), often selecting five as the maximum bound on the use of some constructs.[204] However, the effects of
working memory capacity-limits cannot be solved by such simple rules. The following are some of the many
issues that need to be considered:

118 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

• What code is likely to be written as a consequence of a guideline recommendation that specifies some
limit on the use of a construct? Would following the guideline lead to code that was more difficult to
comprehend?

• Human memory organizes information into related chunks (which can then be treated as a single item)
multiple chunks may in turn be grouped together, forming a structured information hierarchy. The
visibility of this structure in the visible source may be beneficial.

• There are different limits for different kinds of information.

• All of the constructs in the source can potentially require working memory resources. For instance,
identifiers containing a greater number of syllables consume more resources in the phonological loop. identifier

cognitive resource
usage

There has been some research on the interaction between human memory and software development. For
instance, Altmann[7] built a computational process model based on SOAR, and fitted it to 10.5 minutes of
programmer activity (debugging within an emacs window). The simulation was used to study the memories,
called near-term memory by Altmann, built up while trying to solve a problem. However, the majority of
studies discussed in this book are not directly related to reading and writing source code (your author has
not been able to locate many). They can, at best, be used to provide indicators. The specific applications of
these results occur throughout this book. They include reducing interference between information chunks identifier

syntax

and reducing the complexity of reasoning tasks. selection
statement
syntax

16.2.2.9 Memory and aging
A study by Swanson[440] investigated how various measures of working memory varied with the age of the memory

ageingsubject. The results from diverse working memory tasks were reasonably intercorrelated. The following are
the general conclusions:

• Age-related differences are better predicted by performance on tasks that place high demands on
accessing information or maintaining old information in working memory than on measures of
processing efficiency.

• Age-related changes in working memory appear to be caused by changes in a general capacity system.

• Age-related performance for both verbal and visuo-spatial working memory tasks showed similar 0 visuo-spatial
memory

patterns of continuous growth that peak at approximately age 45.

16.2.3 Attention
Attention is a limited resource provided by the human mind. It has been proposed that the age we live in is attention

not the information age, but the attention age.[93] Viewed in resource terms there is often significantly more
information available to a person than attention resources (needed to process it). This is certainly true of the
source code of any moderately large application.

Much of the psychology research on attention has investigated how inputs from our various senses handled.
It is known that they operate in parallel and at some point there is a serial bottleneck, beyond which point it
is not possible to continue processing input stimuli in parallel. The point at which this bottleneck occurs is
a continuing subject of debate. There are early selection theories, late selection theories, and theories that
combine the two.[337] In this book, we are only interested in the input from one sense, the eyes. Furthermore,
the scene viewed by the eyes is assumed to be under the control of the viewer. There are no objects that
spontaneously appear or disappear; the only change of visual input occurs when the viewer turns a page or
scrolls the source code listing on a display.

Read the bold print in the following paragraph:
Somewhere Among hidden the in most the spectacular Rocky Mountains cognitive near abilities Central

City is Colorado the an ability old to miner select hid one a message box from of another. gold. We
Although do several this hundred by people focusing have our looked attention for on it, certain they cues
have such not as found type it style.

January 30, 2008 v 1.1 119

Introduction 16 Human characteristics0

What do you remember from the regular, non-bold, text? What does this tell you about selective attention?
People can also direct attention to their internal thought processes and memories. Internal thought

processes are the main subject of this section. The issue of automatization (the ability to perform operations
automatically after a period of training) is also covered; visual attention is discussed elsewhere.automa-

tization
0

Ideas and theories of attention and conscious thought are often intertwined. While of deep significance,
these issues are outside the scope of this book. The discussion in this section treats attention as a resource
available to a developer when reading and writing source code. We are interested in knowing the characteris-
tics of this resource, with a view to making the best use of the what is available. Studies involving attention
have looked at capacity limits, the cost of changes of attention, and why some thought-conscious processes
require more effort than others.

The following are two attention resource theories:

• The single-capacity theory. This proposes that performance depends on the availability of resources;
more information processing requires more resources. When people perform more than one task at the
same time, the available resources per task is reduced and performance decreases.

• The multiple-resource theory. This proposes that there are several different resources. Different tasks
can require different resources. When people perform more than one task at the same time, the effect
on the response for each task will depend on the extent to which they need to make use of the same
resource at the same time.

Many of the multiple-resource theory studies use different sensory input tasks; for instance, subjects are
required to attend to a visual and an audio channel at the same time. Reading source code uses a single
sensory input, the eyes. However, the input is sufficiently complex that it often requires a great deal of
thought. The extent to which code reading thought tasks are sufficiently different that they will use different
cognitive resources is unknown. Unless stated otherwise, subsequent discussion of attention will assume that
the tasks being performed, in a particular context, call on the same resources.

As discussed previously, the attention, or rather the focus of attention is believed to be capacity-limited.memory
developer

0

Studies suggest that this limit is around four chunks.[88] Studies[479] have also found that attention performance
has an age-related component.

Power law of learningpower law of
learning Studies have found that nearly every task that exhibits a practice effect follows the power law of learning;

which has the form:

RT = a+ bN−c (0.21)

where RT is the response time; N is the number of times the task has been performed; and a, b, and c are
constants. There were good theoretical reasons for expecting the equation to have an exponential form (i.e.,
a+ be−cN); many of the experimental results could be fitted to such an equation. However, if chunking is
assumed to play a part in learning, a power law is a natural consequence (see Newell[321] for a discussion).

16.2.4 Automatization
Source code contains several frequently seen patterns of usage. Experienced developers gain a lot ofautomatization

culture of C 0
experience writing (or rather typing in) these constructs. As experience is gained, developers learn to type in
these constructs without giving much thought to what they are doing. This process is rather like learning to
write at school; children have to concentrate on learning to form letters and the combination of letters that
form a word. After sufficient practice, many words only need to be briefly thought before they appear on the
page without conscious effort.

The instance theory of automatization[266] specifies that novices begin by using an algorithm to perform a
task. As they gain experience they learn specific solutions to specific problems. These solutions are retrieved

120 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

from memory when required. Given sufficient experience, the solution to all task-related problems can be
obtained from memory and the algorithmic approach, to that task, is abandoned. The underlying assumptions
of the theory are that encoding of problem and solution in memory is an unavoidable consequence of attention.
Attending to a stimulus is sufficient to cause it to be committed to memory. The theory also assumes that
retrieval of the solution from memory is an unavoidable consequence of attending to the task (this retrieval
may not be successful, but it occurs anyway). Finally, each time the task is encountered (the instances) it
causes encoding, storing, and retrieval, making it a learning-based theory.

Automatization (or automaticity) is an issue for coding guidelines in that many developers will have
learned to use constructs whose use is recommended against. Developers’ objections to having to stop using
constructs that they know so well, and having to potentially invest in learning new techniques, is something
that management has to deal with.

16.2.5 Cognitive switch
Some cognitive processes are controlled by a kind of executive mechanism. The nature of this executive cognitive switch

is poorly understood and its characteristics are only just starting to be investigated.[220] The process of
comprehending source code can require switching between different tasks. Studies[309] have found that
subjects responses are slower and more error prone immediately after switching tasks. The following
discussion highlights the broader research results.

A study by Rogers and Monsell[383] used the two tasks of classifying a letter as a consonant or vowel,
and classifying a digit as odd or even. The subjects were split into three groups. One group was given the
latter classification task, the second group the digit classification task, and the third group had to alternate
(various combinations were used) between letter and digit classification. The results showed that having to
alternate tasks slowed the response times by 200 to 250 ms and the error rates went up from 2% to 3% to
6.5% to 7.5%. A study by Altmann[8] found that when the new task shared many features in common with
the previous task (e.g., switching from classifying numbers as odd or even, to classifying them as less than or
greater than five) the memories for the related tasks interfered, causing a reduction in subject reaction time
and an increase in error rate.

The studies to date have suggested the following conclusions:[119]

• When it occurs the alternation cost is of the order of a few hundred milliseconds, and greater for more
complex tasks.[388]

• When the two tasks use disjoint stimulus sets, the alternation cost is reduced to tens of milliseconds,
or even zero. For instance, the tasks used by Spector and Biederman[423] were to subtract three from
Arabic numbers and name antonyms of written words. antonym

• Adding a cue to each item that allows subjects to deduce which task to perform reduces the alternation
cost. In the Spector and Biederman study, they suffixed numbers with “+3” or “-3” in a task that
required them to add or subtract three from the number.

• An alternation cost can be found in tasks having disjoint stimulus sets when those stimulus sets
occurred in another pair of tasks that had recently been performed in alternation.

These conclusions raise several questions in a source code reading context. To what extent do different tasks
involve different stimulus sets and how prominent must a cue be (i.e., is the 0x on the front of a hexadecimal
number sufficient to signal a change of number base)? These issues are discussed elsewhere under the C
language constructs that might involve cognitive task switches. character

constant
value
bitwise opera-
tors

Probably the most extreme form of cognitive switch is an external interruption. In some cases, it may be
necessary for developers to perform some external action (e.g., locating a source file containing a needed
definition) while reading source code. Latorella[247] discusses the impact of interruptions on the performance
of flight deck personnel (in domains where poor performance in handling interruptions can have fatal
consequences), and McFarlane[286] provides a human-computer interruption taxonomy.

January 30, 2008 v 1.1 121

Introduction 16 Human characteristics0

16.2.6 Cognitive effort
Why do some mental processes seem to require more mental effort than others? Why is effort an issue incognitive effort

mental operations? The following discussion is based on Chapter 8 of Pashler.[337]

One argument is that mental effort requires energy, and the body’s reaction to concentrated thinking is to
try to conserve energy by creating a sense of effort. Studies of blood flow show that the brain accounts for
20% of heart output, and between 20% to 25% of oxygen and glucose requirements. But, does concentrated
thinking require a greater amount of metabolic energy than sitting passively? The answer from PET scans of
the brain appears to be no. In fact the energy consumption of the visual areas of the brain while watching
television are higher than the consumption levels of those parts of the brain associated with difficult thinking.

Another argument is that the repeated use of neural systems produces a temporary reduction in their
efficiency. A need to keep these systems in a state of readiness (fight or flight) could cause the sensation of
mental effort. The results of some studies are not consistent with this repeated use argument.

The final argument, put forward by Pashler, is that difficult thinking puts the cognitive system into a state
where it is close to failing. It is the internal recognition of a variety of signals of impending cognitive failure
that could cause the feeling of mental effort.

At the time of this writing there is no generally accepted theory of the root cause of cognitive effort. It is
a recognized effect and developers’ reluctance to experience it is a factor in the specification some of the
guideline recommendations.

What are the components of the brain that are most likely to be resource limited when performing a source
code comprehension task? Source code comprehension involves many of the learning and problem solving
tasks that students encounter in the class room. Studies have found a significant correlation between the
working memory requirements of a problem and students’ ability to solve it[427] and teenagers academic
performance in mathematics and science subjects (but not English).[139]

Most existing research has attempted to find a correlation between a subjects learning and problem solving
performance and the capacity of their working memory.[79] Some experiments have measured subjects recall
performance, after performing various tasks. Others have measured subjects ability to make structure the
information they are given into a form that enables them to answer questions about it[157] (e.g., who met who
in “The boy the girl the man saw met slept.”).

Cognitive load might be defined as the total amount of mental activity imposed on working memory atcognitive load

any instant of time. The cognitive effort needed to solve a problem being the sum of all the cognitive loads
experienced by the person seeking the solution.

Cognitive effort =
t∑

i=i

Cognitive load i (0.22)

Possible techniques for reducing the probability that a developers working memory capacity will be exceeded
during code comprehension include:

• organizing information into chunks that developers are likely to recognize and have stored in theirmemory
chunking

0

long-term memory,

• minimizing the amount of information that developers need to simultaneously keep in working memory
during code comprehension (i.e., just in time information presentation),identifier

cognitive re-
source usage

• minimizing the number of relationships between the components of a problem that need to be con-
sidered (i.e., break it up into smaller chunks that can be processed independently of each other).
Algorithms based on database theory and neural networks[157] have been proposed as a method of
measuring the relational complexity of a problem.

122 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

16.2.7 Human error

The discussion in this section has been strongly influenced by Human Error by Reason.[375] Models of errors developer
errorsmade by people have been broken down, by researchers, into different categories.

Table 0.17: Main failure modes for skill-based performance. Adapted from Reason.[375]

Inattention Over Attention

Double-capture slips Omissions
Omissions following interruptions Repetitions
Reduced intentionality Reversals
Perceptual confusions
Interference errors

• Skill-based errors (see Table 0.17) result from some failure in the execution and/or the storage stage of
an action sequence, regardless of whether the plan which guided when was adequate to achieve its
objective. Those errors that occur during execution of an action are called slips and those that occur
because of an error in memory are called lapses.

• Mistakes can be defined as deficiencies or failures in the judgmental and/or inferential processes
involved in the selection of an objective or in the specification of the means to achieve it, irrespective
of whether the actions directed by this decision-scheme run according to plan. Mistakes are further
categorized into one of two kinds— knowledge-based mistakes (see Table 0.18) mistakes and rule
based mistakes (see Table 0.19).

Table 0.18: Main failure modes for knowledge-based performance. Adapted from Reason.[375]

Knowledge-based Failure Modes

Selectivity
Workspace limitations
Out of, sight out of mind
Confirmation bias
Overconfidence
Biased reviewing
Illusory correlation
Halo effects
Problems with causality
Problems with complexity

Problems with delayed feed-back
Insufficient consideration of processes in time
Difficulties with exponential developments
Thinking in causal series not causal nets (unaware of side-effects of action)
Thematic vagabonding (flitting from issue to issue)
Encysting (lingering in small detail over topics)

This categorization can be of use in selecting guideline recommendations. It provides a framework for
matching the activities of developers against existing research data on error rates. For instance, developers
would make skill-based errors while typing into an editor or using cut-and-paste to move code around.

January 30, 2008 v 1.1 123

Introduction 16 Human characteristics0

Table 0.19: Main failure modes for rule-base performance. Adapted from Reason.[375]

Misapplication of Good Rules Application of Bad Rules

First exceptions Encoding deficiencies
Countersigns and nosigns Action deficiencies
Information overload Wrong rules
Rule strength Inelegant rules
General rules Inadvisable rules
Redundancy
Rigidity

16.2.7.1 Skill-based mistakes
The consequences of possible skill-based mistakes may result in a coding guideline being created. However,
by their very nature these kinds of mistakes cannot be directly recommended against. For instance, mistypings
of identifier spellings leads to a guideline recommendation that identifier spellings differ in more than one
significant character. A guideline recommending that identifier spellings not be mistyped being pointless.identifier

typed form
??

Information on instances of this kind of mistake can only come from experience. They can also depend on
development environments. For instance, cut-and-paste mistakes may vary between use of line-based and
GUI-based editors.

16.2.7.2 Rule-based mistakes
Use of rules to perform a task (a rule-based performance) does not imply that if a developer has sufficientrule-base mis-

takes expertise within the given area that they no longer need to expend effort thinking about it (a knowledge-based
performance), only that a rule has been retrieved, from the memory, and a decision made to use it (rending a
knowledge-based performance).

The starting point for the creation of guideline recommendations intended to reduce the number of rule-
based mistakes, made by developers is an extensive catalog of such mistakes. Your author knows of no such
catalog. An indication of the effort needed to build such a catalog is provided by a study of subtraction
mistakes, done by VanLehn.[475] He studied the mistakes made by children in subtracting one number from
another, and built a computer model that predicted many of the mistakes seen. The surprising fact, in the
results, was the large number of diagnosed mistakes (134 distinct diagnoses, with 35 occurring more than
once). That somebody can write a 250-page book on subtraction mistakes, and the model of procedural
errors built to explain them, is an indication that the task is not trivial.

Holland, Holyoak, Nisbett, and Thagard[172] discuss the use of rules in solving problems by induction and
the mistakes that can occur through different rule based performances.

16.2.7.3 Knowledge-based mistakes
Mistakes that occur when people are forced to use a knowledge-based performance have two basic sources:
bounded rationality and an incomplete or inaccurate mental model of the problem space.bounded

rationality
0

A commonly used analogy of knowledge-based performances is that of a beam of light (working memory)
that can be directed at a large canvas (the mental map of the problem). The direction of the beam is partially
under the explicit control of its operator (the human conscious). There are unconscious influences pulling the
beam toward certain parts of the canvas and avoiding other parts (which may, or may not, have any bearing
on the solution). The contents of the canvas may be incomplete or inaccurate.

People adopt a variety of strategies, or heuristics, to overcome limitations in the cognitive resources
available to them to perform a task. These heuristics appear to work well in the situations encountered in
everyday human life, especially so since they are widely used by large numbers of people who can share in a
common way of thinking.

Reading and writing source code is unlike everyday human experiences. Furthermore, the reasoning
methods used by the non-carbon-based processor that executes software are wholly based on mathematical
logic, which is only one of the many possible reasoning methods used by people (and rarely the preferred
one at that).

124 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

There are several techniques for reducing the likelihood of making knowledge-based mistakes. For
instance, reducing the size of the canvas that needs to be scanned and acknowledging the effects of heuristics. expressions

0 availability
heuristic

0 representa-
tive heuristic

16.2.7.4 Detecting errors
The modes of control for both skill-based and rule-based performances are feed-forward control, while the
mode for knowledge-based performances is feed-back control. Thus, the detection of any skill-based or
rule-based mistakes tends to occur as soon as they are made, while knowledge-based mistakes tend to be
detected long after they have been made.

There have been studies looking at how people diagnose problems caused by knowledge-based mis-
takes.[153] However, these coding guidelines are intended to provide advice on how to reduce the number of
mistakes, not how to detect them once they have been made. Enforcement of coding guidelines to ensure that

0 guideline rec-
ommendation
enforceable

violations are detected is a very important issue.

16.2.7.5 Error rates
There have been several studies of the quantity of errors made by people performing various tasks. It is people

error ratesrelatively easy to obtain this information for tasks that involve the creation of something visible (e.g., written
material, of a file on a computer). Obtaining reliable error rates for information that is read and stored (or
not) in people’s memory is much harder to obtain. The following error rates may be applicable to writing
source code:

• Touch typists, who are performing purely data entry:[280] with no error correction 4% (per keystroke), typing mis-
takes

typing nonsense words (per word) 7.5%.

• Typists using a line-oriented word processor:[394] 3.40% of (word) errors were detected and corrected
by the typist while typing, 0.95% were detected and corrected during proofreading by the typist, and
0.52% were not detected by the typist.

• Students performing calculator tasks and table lookup tasks: per multipart calculation, per table lookup,
1% to 2%.[290]

16.2.8 Heuristics and biases
In the early 1970s Amos Tversky, Daniel Kahneman, and other psychologists[210] performed studies, the Heuristics

and Biasesresults of which suggested people reason and make decisions in ways that systematically violate (mathematical
based) rules of rationality. These studies covered a broad range of problems that might occur under quite
ordinary circumstances. The results sparked the growth of a very influential research program often known
as the heuristics and biases program.

There continues to be considerable debate over exactly what conclusions can be drawn from the results of
these studies. Many researchers in the heuristics and biases field claim that people lack the underlying rational
competence to handle a wide range of reasoning tasks, and that they exploit a collection of simple heuristics
to solve problems. It is the use of these heuristics that make them prone to non-normative patterns of
reasoning, or biases. This position, sometimes called the standard picture, claims that the appropriate norms
for reasoning must be derived from mathematical logic, probability, and decision theory. An alternative to the
standard Picture is proposed by evolutionary psychology. These researchers hold that logic and probability 0 evolutionary

psychology
are not the norms against which human reasoning performance should be measured.

When reasoning about source code the appropriate norm is provided by the definition of the programming
language used (which invariably has a basis in at least first order predicate calculus). This is not to say that
probability theory is not used during software development. For instance, a developer may choose to make
use of information on commonly occurring cases (such usage is likely to be limited to ordering by frequency
or probability; Bayesian analysis is rarely seen).

What do the results of the heuristics and biases research have to do with software development, and do
they apply to the kind of people who work in this field? The subjects used in these studies were not, at the
time of the studies, software developers. Would the same results have been obtained if software developers

January 30, 2008 v 1.1 125

Introduction 16 Human characteristics0

had been used as subjects? This question implies that developers’ cognitive processes, either through trainingdeveloper
mental char-

acteristics

0

or inherent abilities, are different from those of the subjects used in these studies. The extent to which
developers are susceptible to the biases, or use the heuristics, found in these studies is unknown. Your author
assumes that they are guilty until proven innocent.

Another purpose for describing these studies is to help the reader get past the idea that people exclusively
apply mathematical logic and probability in problem solving.

16.2.8.1 Reasoning
Comprehending source code involves performing a significant amount of reasoning over a long period ofdeveloper

reasoning time. People generally consider themselves to be good at reasoning. However, anybody who has ever written
a program knows how many errors are made. These errors are often claimed, by the author, to be caused
by any one of any number of factors, except poor reasoning ability. In practice people are good at certain
kinds of reasoning problems (the kind seen in everyday life) and very poor at others (the kind that occur in
mathematical logic).

The basic mechanisms used by the human brain, for reasoning, have still not been sorted out and are
an area of very active research. There are those who claim that the mind is some kind of general-purpose
processor, while others claim that there are specialized units designed to carry out specific kinds of tasks
(such as solving specific kinds of reasoning problems). Without a general-purpose model of human reasoning,
there is no more to be said in this section. Specific constructs involving specific reasoning tasks are discussed
in the relevant sentences.selection

statement
syntax

logical-AND-
expression

syntax
logical-OR-
expression

syntax

16.2.8.2 Rationality
Many of those who study software developer behavior (there is no generic name for such people) have a

developer
rationality

belief in common with many economists. Namely, that their subjects act in a rational manner, reaching
decisions for well-articulated goals using mathematical logic and probability, and making use of all the
necessary information. They consider decision making that is not based on these norms as being irrational.

Deciding which decisions are the rational ones to make requires a norm to compare against. Many earlybounded rational-
ity researchers assumed that mathematical logic and probability were the norm against which human decisions

should be measured. The term bounded rationality[412] is used to describe an approach to problem solving
performed when limited cognitive resources are available to process the available information. A growing
number of studies[143] are finding that the methods used by people to make decisions and solve problems are
often optimal, given the resources available to them. A good discussion of the issues, from a psychology
perspective, is provided by Samuels, Stich and Faucher.[390]

For some time a few economists have been arguing that people do not behave according to mathematical
norms, even when making decisions that will affect their financial well-being.[285] Evidence for this
heresy has been growing. If people deal with money matters in this fashion, how can their approach to
software development fare any better? Your author takes the position, in selecting some of the guideline
recommendations in this book, that developers’ cognitive processes when reading and writing source are no
different than at other times.

When reading and writing source code written in the C language, the rationality norm is defined in terms
of the output from the C abstract machine. Some of these guideline recommendations are intended to help
ensure that developers’ comprehension of source agrees with this norm.

16.2.8.3 Risk asymmetry
The term risk asymmetry refers to the fact that people are risk averse when deciding between alternativesrisk asymmetry

that have a positive outcome, but are risk seeking when deciding between alternatives that have a negative
outcome.

Making a decision using uncertain information involves an element of risk; the decision may not be the
correct one. How do people handle risk?

Kahneman and Tversky[214] performed a study in which subjects were asked to make choices about gaining
or losing money. The theory they created, prospect theory, differed from the accepted theory of the day,

126 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

Losses Gains

Value

Figure 0.30: Relationship between subjective value to gains and to losses. Adapted from Kahneman.[214]

expected utility theory (which still has followers). Subjects were presented with the following problems:

Problem 1: In addition to whatever you own, you have been given 1,000. You are now asked to
choose between:

A: Being given a further 1,000, with probability 0.5
B: Being given a further 500, unconditionally
Problem 2: In addition to whatever you own, you have been given 2,000. You are now asked to

choose between:
C: Loosing 1,000, with probability 0.5
D: Loosing 500, unconditionally

The majority of the subjects chose B (84%) in the first problem, and C (69%) in the second. These results,
and many others like them, show that people are risk averse for positive prospects and risk seeking for
negative ones (see Figure 0.30).

In the following problem the rational answer, based on knowledge of probability, is E; however, 80% of
subjects chose F.

Problem 3: You are asked to choose between:
E: Being given 4,000, with probability 0.8
F: Being given 3,000, unconditionally

Kahneman and Tversky also showed that people’s subjective probabilities did not match the objective
probabilities. Subjects were given the following problems:

Problem 4: You are asked to choose between:
G: Being given 5,000, with probability 0.001
H: Being given 5, unconditionally
Problem 5: You are asked to choose between:
I: Loosing 5,000, with probability 0.001
J: Loosing 5, unconditionally

Most the subjects chose G (72%) in the first problem and J (83%) in the second.
Problem 4 could be viewed as a lottery ticket (willing to forego a small amount of money for the chance

of wining a large amount), while Problem 5 could be viewed as an insurance premium (willingness to pay a
small amount of money to avoid the possibility of having to pay out a large amount).

The decision weight given to low probabilities tends to be higher than that warranted by the evidence.
The decision weight given to other probabilities tends to be lower than that warranted by the evidence (see
Figure 0.31).

January 30, 2008 v 1.1 127

Introduction 16 Human characteristics0

Stated probability

D
ec

is
io

n
w

ei
gh

t

0

0.5

1.0

0.5 1.0

Figure 0.31: Possible relationship between subjective and objective probability. Adapted from Kahneman.[214]

16.2.8.4 Framing effects
The framing effect occurs when alternative framings of what is essentially the same decision task causeframing effect

predictably different choices.
Kahneman and Tversky[213] performed a study in which subjects were asked one of the following question:

Imagine that the U.S. is preparing for the outbreak of an unusual Asian disease, which is expected to
kill 600 people. Two alternative programs to combat the disease have been proposed. Assume that the
exact scientific estimates of the consequences of the programs are as follows:

If Program A is adopted, 200 people will be saved.
If Program B is adopted, there is a one-third probability that 600 people will be saved and a two thirds

probability that no people will be saved.
Which of the two programs would you favor?

This problem is framed in terms of 600 people dying, with the option being between two programs that
save lives. In this case subjects are risk averse with a clear majority, 72%, selecting Program A. For the
second problem the same cover story was used, but subjects were asked to select between differently worded
programs:

If Program C is adopted, 400 people will die.
If Program D is adopted, there is a one-third probability that nobody will die and two-thirds probability

that 600 people will die.

In terms of their consequences Programs A and B are mathematically the same as C and D, respectively.
However, this problem is framed in terms of no one dying. The best outcome would be to maintain this state
of affairs. Rather than accept an unconditional loss, subjects become risk seeking with a clear majority, 78%,
selecting Program D.

Even when subjects were asked both questions, separated by a few minutes, the same reversals in
preference were seen. These results have been duplicated in subsequent studies by other researchers.

16.2.8.5 Context effects
The standard analysis of the decision’s people make assumes that they are procedure-invariant; that is,context effects

assessing the attributes presented by different alternatives should always lead to the same one being selected.
Assume, for instance, that in a decision task, a person chooses alternative X, over alternative Y. Any previous
decisions they had made between alternatives similar to X and Y would not be thought to affect later decisions.
Similarly, the addition of a new alternative to the list of available alternatives should not cause Y to be
selected, over X.

128 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

Attribute 1

A
ttr

ib
ut

e
2

•

•

y
1

x
1

•
•

y

x
•

•
y

2 x
2

Figure 0.32: Text of background trade-off. Adapted from Tversky.[466]

People will show procedure-invariance if they have well-defined values and strong beliefs. In these cases
the appropriate values might be retrieved from a master list of preferences held in a person’s memory. If
preferences are computed using some internal algorithm, each time a person has to make a decision, then it
becomes possible for context to have an affect on the outcome.

Context effects have been found to occur because of the prior history of subjects answering similar
questions, background context, or because of presentation of the problem itself, local context. The following
two examples are taken from a study by Tversky and Simonson.[466]

To show that prior history plays a part in a subjects judgment, Tversky and Simonson split a group of
subjects in two. The first group was asked to decide between the alternatives X1 and Y1, while the second
group was asked to select between the options X2 and Y2. Following this initial choice all subjects were
asked to chose between X and Y .

Table 0.20: Percentage of each alternative selected by subject groups S1 and S2. Adapted from Tversky.[466]

Warranty Price S1 S2

X1 $85 12%
Y1 $91 88%
X2 $25 84%
Y2 $49 16%
X $60 57% 33%
Y $75 43% 67%

Subjects previously exposed to a decision where a small difference in price (see Table 0.20) ($85 vs. $91)
was associated with a large difference in warranty (55,000 miles vs. 75,000 miles), were more likely to select
the less-expensive tire from the target set (than those exposed to the other background choice, where a large
difference in price was associated with a small difference in warranty).

In a study by Simonson and Tversky,[414] subjects were asked to decide between two microwave ovens.
Both were on sale at 35% off the regular price, at sale prices of $109.99 and $179.99. In this case 43% of the
subjects selected the more expensive model. For the second group of subjects, a third microwave oven was
added to the selection list. This third oven was priced at $199.99, 10% off its regular price. The $199.99
microwave appeared inferior to the $179.99 microwave (it had been discounted down from a lower regular
price by a smaller amount), but was clearly superior to the $109.99 model. In this case 60% selected the
$179.99 microwave (13% chose the more expensive microwave). The presence of a third alternative had
caused a significant number of subjects to switch the model selected.

16.2.8.6 Endowment effect
Studies have shown that losses are valued far more than gains. This asymmetry in the value assigned, by endowment effect

0 risk asymme-
trypeople, to goods can be seen in the endowment effect. A study performed Knetsch[226] illustrates this effect.

Subjects were divided into three groups. The first group of was given a coffee mug, the second group

January 30, 2008 v 1.1 129

Introduction 16 Human characteristics0

was given a candy bar, and the third group was given nothing. All subjects were then asked to complete a
questionnaire. Once the questionnaires had been completed, the first group was told that they could exchange
their mugs for a candy bar, the second group that they could exchange their candy bar for a mug, while the
third group was told they could decide between a mug or a candy bar. The mug and the candy bar were sold
in the university bookstore at similar prices.

Table 0.21: Percentage of subjects willing to exchange what they had been given for an equivalently priced item. Adapted from
Knetsch.[226]

Group Yes No

Give up mug to obtain candy 89% 11%
Give up candy to obtain mug 90% 10%

The decisions made by the third group, who had not been given anything before answering the question-
naire, were: mug 56%, candy 44%. This result showed that the perceived values of the mug and candy bar
were close to each other.

The decisions made by the first and second groups (see Table 0.21) showed that they placed a higher value
on a good they owned than one they did not own (but could obtain via a simple exchange).

The endowment effect has been duplicated in many other studies. In some studies, subjects required
significantly more to sell a good they owned than they would pay to purchase it.

16.2.8.7 Representative heuristic
The representative heuristic evaluates the probability of an uncertain event, or sample, by the degree to whichrepresentative

heuristic it

• is similar in its essential attributes to the population from which it is drawn, and

• reflects the salient attributes of the process that generates it

given two events, X and Y. The event X is judged to be more probable than Y when it is more representative.
The term subjective probability is sometimes used to describe these probabilities. They are subjective in
the sense that they are created by the people making the decision. Objective probability is the term used
to describe the values calculated from the stated assumptions, according to the axioms of mathematical
probability.

Selecting alternatives based on the representativeness of only some of their attributes can lead to signif-
icant information being ignored; in particular the nonuse of base-rate information provided as part of thebase rate

neglect
0

specification of a problem.
Treating representativeness as an operator, it is a (usually) directional relationship between a family,

or process M, and some instance or event X, associated with M. It can be defined for (1) a value and a
distribution, (2) an instance and a category, (3) a sample and a population, or (4) an effect and a cause. These
four basic cases of representativeness occur when (Tversky[464]):

1. M is a family and X is a value of a variable defined in this family. For instance, the representative
value of the number of lines of code in a function. The most representative value might be the mean
for all the functions in a program, or all the functions written by one author.

2. M is a family and X is an instance of that family. For instance, the number of lines of code in the
function foo_bar. It is possible for an instance to be a family. The Robin is an instance of the bird
family and a particular individual can be an instance of the Robin family.

3. M is a family and X is a subset of M. Most people would agree that the population of New York City
is less representative of the US than the population of Illinois. The criteria for representativeness in

130 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

a subset is not the same as for one instance. A single instance can represent the primary attributes
of a family. A subset has its own range and variability. If the variability of the subset is small, it
might be regarded as a category of the family, not a subset. For instance, the selected subset of the
family birds might only include Robins. In this case, the set of members is unlikely to be regarded as a
representative subset of the bird family.

4. M is a (causal) system and X is a (possible) instance generated by it. Here M is no longer a family of
objects, it is a system for generating instances. An example would be the mechanism of tossing coins
to generate instances of heads and tails.

16.2.8.7.1 Belief in the law of small numbers
Studies have shown that people have a strong belief in what is known as the law of small numbers. This law of small

numbers“law” might be stated as: “Any short sequence of events derived from a random process shall have the same
statistical properties as that random process.” For instance, if a fairly balanced coin is tossed an infinite
number of times the percentage of heads seen will equal the percentage of tails seen. However, according to
the law of small numbers, any short sequence of coin tosses will also have this property. Statistically this is
not true, the sequences HHHHHHHHHH and THHTHTTHTH are equally probable, but one of them does
not appear to be representative of a random sequence.

Readers might like to try the following problem.

The mean IQ of the population of eighth graders in a city is known to be 100. You have selected a
random sample of 50 children for a study of educational achievement. The first child tested has an IQ of
150.

What do you expect the mean IQ to be for the whole sample?

Did you believe that because the sample of 50 children was randomly chosen from a large population,
with a known property, that it would also have this property?; that is, the answer would be 100? The effect
of a child with a high IQ being canceled out by a child with a very low IQ? The correct answer is 101; the
known information, from which the mean should be calculated, is that we have 49 children with an estimated
average of 100 and one child with a known IQ of 150.

16.2.8.7.2 Subjective probability
In a study by Kahneman and Tversky,[212] subjects were divided into two groups. Subjects in one group were subjective

probabilityasked the more than question, and those in the other group the less than question.

An investigator studying some properties of a language selected a paperback and computed the
average word-length in every page of the book (i.e., the number of letters in that page divided by the
number of words). Another investigator took the first line in each page and computed the line’s average
word-length. The average word-length in the entire book is four. However, not every line or page has
exactly that average. Some may have a higher average word-length, some lower.

The first investigator counted the number of pages that had an average word-length of 6 or (more/less)
and the second investigator counted the number of lines that had an average word-length of 6 or
(more/less). Which investigator do you think recorded a larger number of such units (pages for one,
lines for the other)?

January 30, 2008 v 1.1 131

Introduction 16 Human characteristics0

Table 0.22: Percentage of subjects giving each answer. Correct answers are starred. Adapted from Kahneman.[212]

Choice Less than 6 More than 6

The page investigator 20.8%* 16.3%
The line investigator 31.3% 42.9%*

About the same (i.e., within
5% of each other)

47.9% 40.8%

The results (see Table 0.22) showed that subjects judged equally representative outcomes to be equally
likely, the size of the sample appearing to be ignored.

When dealing with samples, those containing the smaller number of members are likely to exhibit the
largest variation. In the preceding case, the page investigator is using the largest sample size and is more
likely to be closer to the average (4), which is less than 6. The line investigator is using a smaller sample of
the book’s contents and is likely to see a larger variation in measured word length (more than 6 is the correct
answer here).

16.2.8.8 Anchoring
Answers to questions can be influenced by completely unrelated information. This was dramatically illustratedAnchoring

in a study performed by Tversky and Kahneman.[463] They asked subjects to estimate the percentage of
African countries in the United Nations. But, before stating their estimate, subjects were first shown an
arbitrary number, which was determined by spinning a wheel of fortune in their presence. In some cases, for
instance, the number 65 was selected, at other times the number 10. Once a number had been determined
by the wheel of fortune subjects were asked to state whether the percentage of African countries in the UN
was higher or lower than this number, and their estimate of the percentage. The median estimates were 45%
of African countries for subjects whose anchoring number was 65, and 25% for subjects whose anchoring
number was 10.

The implication of these results is that people’s estimates can be substantially affected by a numerical
anchoring value, even when they are aware that the anchoring number has been randomly generated.

16.2.8.9 Belief maintenance
Belief comes in various forms. There is disbelief (believing a statement to be false), nonbelief (not believingbelief mainte-

nance
a statement to be true), half-belief, quarter-belief, and so on (the degrees of belief range from barely accepting
a statement, to having complete conviction a statement is true). Knowledge could be defined as belief plus
complete conviction and conclusive justification.

The following are two approaches as to how beliefs might be managed.

1. The foundation approach argues that beliefs are derived from reasons for these beliefs. A belief is
justified if and only if (1) the belief is self-evident and (2) the belief can be derived from the set of
other justified beliefs (circularity is not allowed).

2. The coherence approach argues that where beliefs originated is of no concern. Instead, beliefs must be
logically coherent with other beliefs (believed by an individual). These beliefs can mutually justify
each other and circularity is allowed. A number of different types of coherence have been proposed,
Including deductive coherence (requires a logically consistent set of beliefs), probabilistic coherence
(assigns probabilities to beliefs and applies the requirements of mathematical probability to them),
semantic coherence (based on beliefs that have similar meanings), and explanatory coherence (requires
that there be a consistent explanatory relationship between beliefs).

The foundation approach is very costly (in cognitive effort) to operate. For instance, the reasons for beliefs
need to be remembered and applied when considering new beliefs. Studies[386] show that people exhibit a
belief preservation effect; they continue to hold beliefs after the original basis for those beliefs no longer

132 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

holds. The evidence suggests that people use some form of coherence approach for creating and maintaining
their beliefs.

There are two different ways doubt about a fact can occur. When the truth of a statement is not known
because of a lack of information, but the behavior in the long run is known, we have uncertainty. For instance,
the outcome of the tossing of a coin is uncertain, but in the long run the result is known to be heads (or tails)
50% of the time. The case in which truth of a statement can never be precisely specified (indeterminacy of
the average behavior) is known as imprecision; for instance, “it will be sunny tomorrow”. It is possible for a
statement to contain both uncertainty and imprecision. For instance, the statement, “It is likely that John is a
young fellow”, is uncertain (John may not be a young fellow) and imprecise (young does not specify an exact
age). For a mathematical formulation, see Paskin.[338]

Coding guidelines need to take into account that developers are unlikely to make wholesale modifications
to their existing beliefs to make them consistent with any guidelines they are expected to adhere to. Learning
about guidelines is a two-way process. What a developer already knows will influence how the guideline
recommendations themselves will be processed, and the beliefs formed about their meaning. These beliefs
will then be added to the developer’s existing personal beliefs.[494]

16.2.8.9.1 The Belief-Adjustment model
A belief may be based on a single piece of evidence, or it may be based on many pieces of evidence. How is
an existing belief modified by the introduction of new evidence? The belief-adjustment model of Hogarth
and Einhorn[170] offers an answer to this question. This subsection is based on that paper. The basic equation
for this model is:

Sk = Sk−1 + wk[s(xk)−R] (0.23)

where: Sk is the degree of belief (a value between 0 and 1) in some hypothesis, impression, or attitude after
evaluating k items of evidence; Sk−1 is the anchor, or prior opinion (S0i denotes the initial belief). s(xk)
is the subjective evaluation of the kth item of evidence (different people may assign different values for
the same evidence, xk); R is the reference point, or background, against which the impact of the kth item
of evidence is evaluated. wk is the adjustment weight (a value between zero and one) for the kth item of
evidence.

The encoding process
When presented with a statement, people can process the evidence it contains in several ways. They can

use an evaluation process or an estimation process.
The evaluation process encodes new evidence relative to a fixed point— the hypothesis addressed by a

belief. If the new evidence supports the hypothesis, a person’s belief is increased, but that belief is decreased
if it does not support the hypothesis. This increase, or decrease, occurs irrespective of the current state of a
person’s belief. For this case R = 0, and the belief-adjustment equation simplifies to:

Sk = Sk−1 + wks(xk) (0.24)

where: −1 ≤ s(xk) ≤ 1
An example of an evaluation process might be the belief that the object X always holds a value that is

numerically greater than Y.
The estimation process encodes new evidence relative to the current state of a person’s beliefs. For this

case R = Sk−1, and the belief-adjustment equation simplifies to:

Sk = Sk−1 + wk(s(xk)− Sk−1) (0.25)

January 30, 2008 v 1.1 133

Introduction 16 Human characteristics0

where: 0 ≤ s(xk) ≤ 1
In this case the degree of belief, in a hypothesis, can be thought of as a moving average. For an estimation

process, the order in which evidence is presented can be significant. While reading source code written by
somebody else, a developer will form an opinion of the quality of that person’s work. The judgment of each
code sequence will be based on the readers current opinion (at the time of reading) of the person who wrote
it.

Processing
It is possible to consider s(xk) as representing either the impact of a single piece of evidence (so-called

Step-by-Step, SbS), or the impact of several pieces of evidence (so-called End-of-Sequence, EoS).

Sk = S0 + wk[s(x1, . . . , xk)−R] (0.26)

where s(x1, . . . , xk) is some function, perhaps a weighted average, of the individual subjective evaluations.
If a person is required to give a Step-by-Step response when presented with a sequence of evidence, they

obviously have to process the evidence in this mode. A person who only needs to give an End-of-Sequence
response can process the evidence using either SbS or EoS. The process used is likely to depend on the
nature of the problem. Aggregating, using EoS, evidence from a long sequence of items of evidence, or a
sequence of complex evidence, is likely to require a large amount of cognitive processing, perhaps more than
is available to an individual. Breaking a task down into smaller chunks by using an SbS process, enables it to
be handled by a processor having a limited cognitive capacity. Hogarth and Einhorn proposed that when
people are required to provide an EoS response they use an EoS process when the sequence of items is short
and simple. As the sequence gets longer, or more complex, they shift to an SbS process, to keep the peak
cognitive load (of processing the evidence) within their capabilities.

Adjustment weight
The adjustment weight, wk, will depend on the sign of the impact of the evidence, [s(xk)−R], and the

current level of belief, Sk. Hogarth and Einhorn argue that when s(xk) ≤ R:

wk = αSk−1 (0.27)
Sk = Sk−1 + αSk−1s(xk) (0.28)

and that when s(xk) > R:

wk = β(1− Sk−1) (0.29)
Sk = Sk−1 + β(1− Sk−1)s(xk) (0.30)

where α and β (0 ≤ α, β ≤ 1) represent sensitivity toward positive and negative evidence. Small values
indicating low sensitivity to new evidence and large values indicating high sensitivity. The values of α and β
will also vary between people. For instance, some people have a tendency to give negative evidence greater
weight than positive evidence. People having strong attachments to a particular point of view may not give
evidence that contradicts this view any weight.[449]

Order effects
It can be shown[170] that use of an SbS process when R = Sk−1 leads to a recency effect. When R = 0, a

recency effect only occurs when there is a mixture of positive and negative evidence (there is no recency
effect if the evidence is all positive or all negative).

The use of an EoS process leads to a primacy effect; however, a task may not require a response until all
the evidence is seen. If the evidence is complex, or there is a lot of it, people may adopt an SbS process. In
this case, the effect seen will match that of an SbS process.

134 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

1a

B
el

ie
f

50

70

90

0 1 2

•

• •Strong-Weak

Weak-Strong

1b

B
el

ie
f

50

70

90

0 2

•

•
Strong-Weak

Weak-Strong

2a

90

0 1 2

•

•
•

Weak-Strong

2b

90

0 2

•

•Strong-Weak

Weak-Strong

3a

90

0 1 2

•

•

•

Positive-Negative

Negative-Positive

3b

90

0 2

•

•
Positive-Negative

Negative-Positive

Figure 0.33: Subjects belief response curves for positive weak–strong, negative weak–strong, and positive–negative evidence; (a)
Step-by-Step, (b) End-of-Sequence. Adapted from Hogarth.[170]

A recency effect occurs when the most recent evidence is given greater weight than earlier evidence. A recency effect
primacy effectprimacy effect occurs when the initial evidence is given greater weight than later evidence.

Study
A study by Hogarth and Einhorn[170] investigated order, and response mode, effects in belief updating.

Subjects were presented with a variety of scenarios (e.g., a defective stereo speaker thought to have a bad
connection, a baseball player whose hitting has improved dramatically after a new coaching program, an
increase in sales of a supermarket product following an advertising campaign, the contracting of lung cancer
by a worker in a chemical factory). Subjects read an initial description followed by two or more additional
items of evidence. The additional evidence might be positive (e.g., “The other players on Sandy’s team
did not show an unusual increase in their batting average over the last five weeks”) or negative (e.g., “The
games in which Sandy showed his improvement were played against the last-place team in the league”). This
positive and negative evidence was worded to create either strong or weak forms.

The evidence was presented in a variety of orders (positive or negative, weak or strong). Subjects were
asked, “Now, how likely do you think X caused Y on a scale of 0 to 100?” In some cases, subjects had to
respond after seeing each item of evidence: in other cases, subjects had to respond after seeing all the items.

The results (see Figure 0.33) only show a recency effect when the evidence is mixed, as predicted for the
case R = 0.

Other studies have duplicated these results. For instance, professional auditors have been shown to display
recency effects in their evaluation of the veracity of company accounts.[339, 458]

16.2.8.9.2 Effects of beliefs
The persistence of beliefs after the information they are based on has been discredited is an important issue
in developer training.

Studies of physics undergraduates[283] found that many hours of teaching only had a small effect on their

January 30, 2008 v 1.1 135

Introduction 16 Human characteristics0

a b

Figure 0.34: Two proposed trajectories of a ball dropped from a moving airplane. Based on McCloskey.[283]

qualitative understanding of the concepts taught. For instance, predicting the motion of a ball dropped from
an airplane (see Figure 0.34). Many students predicted that the ball would take the path shown on the right
(b). They failed to apply what they had been taught over the years to pick the path on the left (a).

A study by Ploetzner and VanLehn[349] investigated subjects who were able to correctly answer these
conceptual problems. They found that the students were able to learn and apply information that was implicit
in the material taught. Ploetzner and VanLehn also built a knowledge base of 39 rules needed to solve the
presented problems, and 85 rules needed to generate the incorrect answers seen in an earlier study.

A study by Pazzani[341] showed how beliefs can increase, or decrease, the amount of effort needed to
deduce a concept. Two groups of subjects were shown pictures of people doing something with a balloon. The
balloons varied in color (yellow or purple) and size (small or large), and the people (adults or five-year-old
children) were performing some operation (stretching balloons or dipping them in water). The first group of
subjects had to predict whether the picture was an “example of an alpha”, while the second group had to
“predict whether the balloon will be inflated”. The picture was then turned over and subjects saw the answer.
The set of pictures was the same for both groups of subjects.

The conditions under which the picture was an alpha or inflate were the same, a conjunctive condition (age
== adult) || (action == stretching) and a disjunction condition (size == small) && (color
== yellow).

The difference between these two tasks to predict is that the first group had no prior beliefs about alpha
situations, while it was assumed the second group had background knowledge on inflating balloons. For
instance, balloons are more likely to inflate after they have been stretched, or an adult is doing the blowing
rather than a child.

The other important point to note is that people usually require more effort to learn conjunctive conditions
than they do to learn disjunctive conditions.conditionals

conjunctive/disjunctive

The results (see Figure 0.35) show that, for the inflate concept, subjects were able to make use of their
existing beliefs to improve performance on the disjunctive condition, but these beliefs caused a decrease
in performance on the conjunctive condition (being small and yellow is not associated with balloons being
difficult to inflate).

A study by Gilbert, Tafarodi, and Malone[144] investigated whether people could comprehend an assertion
without first believing it. The results suggested that their subjects always believed an assertion presented to
them, and that only once they had comprehended it were they in a position to, possibly, unbelieve it. The
experimental setup used, involved presenting subjects with an assertion and interrupting them before they had
time to unbelieve it. This finding has implications for program comprehension in that developers sometimes
only glance at code. Ensuring that what they see does not subsequently need to be unbelieved, or is a partial
statement that will be read the wrong way without other information being provided, can help prevent people
from acquiring incorrect beliefs. The commonly heard teaching maxim of “always use correct examples, not
incorrect ones” is an application of this finding.

136 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

Condition
E

xa
m

pl
es

0

10

20

30

40

Alpha Inflate

•

•
conjunction

disjunction

Figure 0.35: Number of examples needed before alpha or inflate condition correctly predicted in six successive pictures. Adapted
from Pazzani[341]

16.2.8.10 Confirmation bias
There are two slightly different definitions of the term confirmation bias used by psychologists, they are: confirmation bias

1. A person exhibits confirmation bias if they tend to interpret ambiguous evidence as (incorrectly)
confirming their current beliefs about the world. For instance, developers interpreting program
behavior as supporting their theory of how it operates, or using the faults exhibited by a program to
conform their view that it was poorly written.

2. When asked to discover a rule that underlines some pattern (e.g., the numeric sequence 2–4–6), people
nearly always apply test cases that will confirm their hypothesis. They rarely apply test cases that will
falsify their hypothesis.

Rabin and Schrag[370] built a model showing that confirmation bias leads to overconfidence (people believing 0 overconfi-
dence

in some statement, on average, more strongly than they should). Their model assumes that when a person
receives evidence that is counter to their current belief, there is a positive probability that the evidence is
misinterpreted as supporting this belief. They also assume that people always correctly recognize evidence
that confirms their current belief. Compared to the correct statistical method, Bayesian updating, this behavior
is biased toward confirming the initial belief. Rabin and Schrag showed that, in some cases, even an infinite
amount of evidence would not necessarily overcome the effects of confirmatory bias; over time a person may
conclude, with near certainty, that an incorrect belief is true.

The second usage of the term confirmation bias applies to a study performed by Wason,[487] which became
known as the 2–4–6 Task. In this study subjects were asked to discover a rule known to the experimenter.
They were given the initial hint that the sequence 2–4–6 was an instance of this rule. Subjects had to write
down sequences of numbers and show them to the experimenter who would state whether they did, or did
not, conform to the rule. When they believed they knew what the rule was, subjects had to write it down
and declare it to the experimenter. For instance, if they wrote down the sequences 6–8–10 and 3–5–7, and
were told that these conformed to the rule, they might declare that the rule was numbers increasing by two.
However, this was not the experimenters rule, and they had to continue generating sequences. Wason found
that subjects tended to generate test cases that confirmed their hypothesis of what the rule was. Few subjects
generated test cases in an attempt to disconfirm the hypothesis they had. Several subjects had a tendency to
declare rules that were mathematically equivalent variations on rules they had already declared.

8 10 12: two added each time; 14 16 18: even numbers in
order of magnitude; 20 22 24: same reason; 1 3 5: two
added to preceding number.
The rule is that by starting with any number two is added each

January 30, 2008 v 1.1 137

Introduction 16 Human characteristics0

time to form the next number.
2 6 10: middle number is the arithmetic mean of the other two;
1 50 99: same reason.
The rule is that the middle number is the arithmetic mean of the
other two.
3 10 17: same number, seven, added each time; 0 3 6;
three added each time.
The rule is that the difference between two numbers next to each
other is the same.
12 8 4: the same number subtracted each time to form the next
number.
The rule is adding a number, always the same one to form the
next number.
1 4 9: any three numbers in order of magnitude.
The rule is any three numbers in order of magnitude.
Sample 2-4-6 subject protocol. Adapted from Wason.[487]

The actual rule used by the experimenter was “three numbers in increasing order of magnitude”.
These findings have been duplicated in other studies. In a study by Mynatt, Doherty, and Tweney,[316]

subjects were divided into three groups. The subjects in one group were instructed to use a confirmatory
strategy, another group to use a disconfirmatory strategy, and a control group was not told to use any strategy.
Subjects had to deduce the physical characteristics of a system, composed of circles and triangles, by
firing particles at it (the particles, circles and triangles, appeared on a computer screen). The subjects were
initially told that “triangles deflect particles”. In 71% of cases subjects selected confirmation strategies. The
instructions on which strategy to use did not have any significant effect.

In a critique of the interpretation commonly given for the results from the 2–4–6 Task, Klayman and
Ha[223] pointed out that it had a particular characteristic. The hypothesis that subjects commonly generate
(numbers increasing by two) from the initial hint is completely contained within the experimenters rule, case
2 in Figure 0.36. Had the experimenters rule been even numbers increasing by two, the situation would have
been that of case 3 in Figure 0.36.

Given the five possible relationships between hypothesis and rule, Klayman and Hu analyzed the possible
strategies in an attempt to find one that was optimal for all cases. They found that the optimal strategy was a
function of a variety of task variables, such as the base rates of the target phenomenon and the hypothesized
conditions. They also proposed that people do not exhibit confirmation bias, rather people have a general
all-purpose heuristic, the positive test strategy, which is applied across a broad range of hypothesis-testing
tasks.

A positive test strategy tests a hypothesis by examining instances in which the property or event is expected
to occur to see if it does occur. The analysis by Klayman and Hu showed that this strategy performs well in
real-world problems. When the target phenomenon is relatively rare, it is better to test where it occurs (or
where it was known to occur in the past) rather than where it is not likely to occur.

A study by Mynatt, Doherty, and Dragan[315] suggested that capacity limitations of working memory
were also an issue. Subjects did not have the capacity to hold information on more than two alternatives in
working memory at the same time. The results of their study also highlighted the fact that subjects process
the alternatives in action (what to do) problems differently than in inference (what is) problems.

Karl Popper[353] pointed out that scientific theories could never be shown to be logically true by generalizing
from confirming instances. It was the job of scientists to try to perform experiments that attempted to falsify
a theory. Popper’s work on how a hypothesis should be validated has become the generally accepted way of
measuring performance (even if many scientists don’t appear to use this approach).

The fact that people don’t follow the hypothesis-testing strategy recommended by Popper is seen, by some,
as a deficiency in peoples thinking processes. The theoretical work by Klayman and Hu shows that it might

138 v 1.1 January 30, 2008

16 Human characteristics Introduction 0

Case 1

H: subjects hypothesis

T: target rule

U: all possible events

U

H T

Case 2

U

H

T

Case 4

U

H T

Case 3

U

T

H

Case 5

U

H T

Figure 0.36: Possible relationships between hypothesis and rule. Adapted from Klayman.[223]

be Poppers theories that are deficient. There is also empirical evidence showing that using disconfirmation
does not necessarily improve performance on a deduction task. A study by Tweney, Doherty, Worner, Pliske,
Mynatt, Gross, and Arkkelin[467] showed that subjects could be trained to use a disconfirmation strategy when
solving the 2–4–6 Task. However, the results showed that using this approach did not improve performance
(over those subjects using a confirmation strategy).

Do developers show a preference toward using positive test strategies during program comprehension?
What test strategy is the best approach during program comprehension? The only experimental work that has
addressed this issue used students in various stages of their academic study. A study by Teasley, Leventhal,
Mynatt, and Rohlman[444] asked student subjects to test a program (based on its specification). The results
showed that the more experienced subjects created a greater number of negative tests.

16.2.8.11 Age-related reasoning ability
It might be thought that reasoning ability declines with age, along with the other faculties. A study by Tentori, reasoning ability

age-relatedOsherson, Hasher, and May[446] showed the opposite effect; some kinds of reasoning ability improving with
age.

Consider the case of a person who has to decide between two alternatives, A and B (e.g., vanilla and
strawberry ice cream), and chooses A. Adding a third alternative, C (e.g., chocolate ice cream) might entice
that person to select C. A mathematical analysis shows that adding alternative C would not cause a change
of preference to B. How could adding the alternative chocolate ice cream possibly cause a person who
previously selected vanilla to now choose strawberry?

So-called irregular choices have been demonstrated in several studies. Such irregular choices seem to
occur among younger (18–25) subjects, older (60–75) subjects tending to be uninfluenced by the addition of
a third alternative.

16.3 Personality
To what extent does personality affect developers’ performance, and do any personality differences need to developer

personalitybe reflected in coding guidelines?

• A study by Turley and Bieman[460] looked for differences in the competencies of exceptional and
non-exceptional developers. They found the personal attributes that differentiated performances were:

January 30, 2008 v 1.1 139

Introduction 17 Introduction0

desire to contribute, perseverance, maintenance of a big picture view, desire to do/bias for action,
driven by a sense of mission, exhibition and articulation of strong convictions, and proactive role with
management. Interesting findings in another context, but of no obvious relevance to these coding
guidelines. Turley and Bieman also performed a Myers-Briggs Type Indicator (MBTI) test[314] onMyers-Briggs

Type Indicator their subjects. The classification containing the most developers (7 out of 20) was INTJ (Introvert,
Intuitive, Thinking, Judging), a type that occurs in only 10% of male college graduates. In 15 out of 20
cases, the type included Introvert, Thinking. There was no significance in scores between exceptional
and nonexceptional performers. These findings are too broad to be of any obvious relevance to coding
guidelines.

• A study of the relationship between personality traits and achievement in an introductory Fortran
course was made by Kagan and Douthat.[209] They found that relatively introverted students, who
were hard-driving and ambitious, obtained higher grades then their more extroverted, easy-going
compatriots. This difference became more pronounced as the course progressed and became more
difficult. Again these findings are too broad to be of any obvious relevance to these coding guidelines.

These personality findings do not mean that to be a good developer a person has to fall within these categories,
only that many of those tested did.

It might be assumed that personality could affect whether a person enjoys doing software development,
and that somebody who enjoys their work is likely to do a better job (but does personal enjoyment affect
quality, or quantity of work performed?). These issues are considered to be outside the scope of this book
(they are discussed a little more in Staffing,).

coding
guidelines

staffing

0

Developers are sometimes said to be paranoid. One study[493] has failed to find any evidence for this claim.

Usage

17 Introduction
This subsection provides some background on the information appearing in the Usage subsections of thisUsage

1
Usage
introduction

book. The purpose of this usage information is two-fold:

1. To give readers a feel for the common developer usage of C language constructs. Part of the process of
becoming an experienced developers involves learning about what is common and what is uncommon.
However, individual experiences can be specific to one application domain, or company cultures.

2. To provide frequency-of-occurrence information that could be used as one of the inputs to cost/benefit
decisions (i.e., should a guideline recommendation be made rather than what recommendation might
be made). This is something of a chicken-and-egg situation in that knowing what measurements to

guideline
recommen-

dations
selecting

0

make requires having potential guideline recommendations in mind, and the results of measurements
may suggest guideline recommendations (i.e., some construct occurs frequently).

Almost all published measurements on C usage are an adjunct to a discussion of some translator optimization
technique. They are intended to show that the optimization, which is the subject of the paper, is worthwhile
because some constructs occurs sufficiently often for an optimization to make worthwhile savings, or that
some special cases can be ignored because they rarely occur. These kinds of measurements are usually
discussed in the Common implementation subsections. One common difference between the measurements
in Common Implementation subsections and those in Usage subsections is that the former are often dynamic
(instruction counts from executing programs), while the latter are often static (counts based on some
representation of the source code).

There have been a few studies whose aim has been to provide a picture of the kinds of C constructs that
commonly occur (e.g., preprocessor usage,[115] embedded systems[111]). These studies are quoted in the
relevant C sentences. There have also been a number of studies of source code usage for other algorithmic

140 v 1.1 January 30, 2008

17 Introduction Introduction 0

languages, Assembler,[85] Fortran,[227] PL/1,[109] Cobol[6, 69, 199] (measurements involving nonalgorithmic
languages have very different interests[63, 75]). These are of interest in studying cross-language usage, but
they are not discussed in this book. In some cases a small number of machine code instruction sequences
(which might be called idioms) have been found to account for a significant percentage of the instructions
executed during program execution.[422]

The intent here is to provide a broad brush picture. On the whole, single numbers are given for the number
of occurrences of a construct. In most cases there is no break down by percentage of functions, source files,
programs, application domain, or developer. There is variation across all of these (e.g., application domain

0 coding
guidelines
applicationsand individual developer). Whenever this variation might be significant, additional information is given. 0 coding
guidelines
coding styleThose interested in more detailed information might like to make their own measurements.

Many of the coding guideline recommendations made in this book apply to the visible source code as seen
by the developer. For these cases any usage measurements also apply to the visible source code. The effects
of any macro replacement, conditional inclusion, or #included header are ignored. Each usage subsection macro re-

placement
specifies what the quoted numbers apply to (usually either visible source, or the tokens processed during
translation phase 7).

In practice many applications do not execute in isolation; there is usually some form of operating system
that is running concurrently with it. The design of processor instruction sets often takes task-switching and
other program execution management tasks into account. In practice the dynamic profile of instructions
executed by a processor reflects this mix of usage,[43] as does the contents of its cache.[281]

17.1 Characteristics of the source code
All source code may appear to look the same to the casual observer. An experienced developer will be aware source code

characteristicsof recurring patterns; source can be said to have a style. Several influences can affect the characteristics of 0 coding
guidelines
coding stylesource code, including the following:

• Use of extensions to the C language and differences, for prestandard C, from the standard (often known
as K&R C). Some extensions eventually may be incorporated into a revised version of the standard;
for instance, long long was added in C99. Some extensions are specific to the processor on which
the translated program is to execute.

0 common
implemen-
tations
language specifica-
tion• The application domain. For instance, scientific and engineering applications tend to make extensive

use of arrays and spend a large amount of their time in loops processing information held in these
arrays; screen based interactive applications often contain many calls to GUI library functions and can
spend more time in these functions than the developer’s code; data-mining applications can spend a
significant amount of time searching large data structures.

• How the application is structured. Some applications consist of a single, monolithic, program, while
others are built from a collection of smaller programs sharing data with one another. These kinds of
organization affect how types and objects are defined and used.

• The extent to which the source has evolved over time. Developers often adopt the low-risk strategy 0 application
evolution

of making the minimal number of changes to a program when modifying it. Often this means that
functions and sequences of related statements tend to grow much larger than would be the case if they
had been written from scratch, because no restructuring is performed.

• Individual or development group stylistic usage. These differences can include the use of large or
small functions, the use of enumeration constants or object-like macros, the use of the smallest integer macro

object-like

type required rather than always using int, and so forth.

17.2 What source code to measure?
This book is aimed at a particular audience and the source code they are likely to be actively working on.
This audience will be working on C source that has been written by more than one developer, has existed for
a year or more, and is expected to continue to be worked on over the coming years.

January 30, 2008 v 1.1 141

Introduction 17 Introduction0

The benchmarks used in various application areas were written with design aims that differ from those ofbenchmarks 0

this book. For instance, the design aim behind the choice of programs in the SPEC CPU benchmark suite
was to measure processor, memory hierarchy, and translator performance. Many of these programs were
written by individuals, are relatively short, and have not changed much over time.

Although there is a plentiful supply of C source code publicly available (an estimated 20.3 million C
source files on the Web[45]), this source is nonrepresentative in a number of ways, including:

• The source has had many of the original defects removed from it. The ideal time to make these
measurements is while the source is being actively developed.

• Software for embedded systems is often so specialized (in the sense of being tied to custom hardware),
or commercially valuable, that significant amounts of it are not usually made publicly available.

Nevertheless, a collection of programs was selected for measurement, and the results are included in this
book (see Table 0.23). The programs used for this set of measurements have reached the stage that somebody
has decided that they are worth releasing. This means that some defects in the source, prior to the release,
will not be available to be included in these usage figures.

Table 0.23: Programs whose source code (i.e., the .c and .h files) was used as the input to measurement tools (operating on
either the visible or translated forms), whose output was used to generate this book’s usage figures and tables.

Name Application Domain Version

gcc C compiler 2.95
idsoftware Games programs, e.g., Doom
linux Operating system 2.4.20
mozilla Web browser 1.0
openafs File system 1.2.2a
openMotif Window manager 2.2.2
postgresql Database system 6.5.3

Table 0.24: Source files excluded from the Usage measurements.

Files Reason for Exclusion

gcc-2.95/libio/tests/tfformat.c a list of approximately 4,000 floating constants
gcc-2.95/libio/tests/tiformat.c a list of approximately 5,000 hexadecimal constants

Table 0.25: Character sequences used to denote those operators and punctuators that perform more than one role in the syntax.

Symbol Meaning Symbol Meaning

++v prefix ++ --v prefix --
v++ postfix ++ v-- postfix --
-v unary minus +v unary plus
*v indirection operator *p star in pointer declaration
&v address-of
:b colon in bitfield declaration ?: colon in ternary operator

17.3 How were the measurements made?
The measurements were based two possible interpretations of the source (both of them static, that is, based
on the source code, not program execution):

• The visible source. This is the source as it might be viewed in a source code editor. The quoted results
specify whether the .c or the .h files, or both, were used. The tools used to make these measurements

142 v 1.1 January 30, 2008

17 Introduction Introduction 0

are based on either analyzing sequences of characters or sequences of preprocessing tokens (built from
the sequences of characters). The source of the tools used to make these measurements is available on
this book’s Web site: http://www.knosof.co.uk/cbook/cbook.html.

• The translated source. This is the source as processed by a translator following the syntax and
semantics of the C language. Measurements based on the translated source differ from those based
on the visible source in that they may not include source occurring within some arms of conditional
inclusion directives, may be affected by macro replacement, may not include all source files in the conditional

inclusion
macro re-
placementdistribution (because the make-file does not require them to be translated), and do not include a few

files which could not be successfully translated by the tool used. (The tools used to measure the
translated source were based on a C static analysis tool.[203]) Every attempt was made to exclude
the contents of any #included system headers (i.e., any header using the < > delimited form) from
the measurements. However, the host on which the measurements were made (RedHat 9, a Linux
distribution) will have some effect; for instance, use of a macro defined in an implementation’s header
may expand to a variety of different preprocessing tokens, depending on the implementation. Also
some application code contains conditional inclusion directives that check properties of the host O/S.

Note. The condition for inclusion in a table containing Common token pairs involving information was that
percentage occurrence of both tokens be greater than 1% and that the sum of both token frequencies be greater
than 5%. In some cases the second requirement excluded tokens pairs when the percentage occurrence of
one of the tokens was relatively high. For instance, the token pair - character-constant does not appear
in Table ?? because the sum of the token frequencies is 4.1 (i.e., 1.9+2.2).

The usage information often included constructs that rarely occurred. Unless stated otherwise a cut-off of
1% was used. Values for table entries such as other-types were created by summing the usage information
below this cut-off value.

January 30, 2008 v 1.1

http://www.knosof.co.uk/cbook/cbook.html

References
1. P. L. Ackerman and E. D. Heggestad. Intelligence, personality, and

interests: Evidence for overlapping traits. Psychological Bulletin,
121(2):219–245, 1997.

2. E. N. Adams. Optimizing preventive service of software products.
IBM Journal of Research and Development, 28(1):2–14, 1984.

3. V. Agarwal, M. S. Hrishikesh, S. W. K. Doug, and Burger. Clock
rate versus IPC: The end of the road for conventional microarchitec-
tures. In Proceedings of the 27th Annual International Symposium
on Computer Architecture, 2000.

4. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison–Wesley, 1985.

5. A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs
on a modern processor: Where does time go? In M. P. Atkinson,
M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie,
editors, Proceedings of the Twenty-fifth International Conference
on Very Large Databases, pages 266–277, Los Altos, CA 94022,
USA, Sept. 1999. Morgan Kaufmann Publishers.

6. M. M. Al-Jarrah and I. S. Torsun. An empirical analysis of COBOL
programs. Software–Practice and Experience, 9:341–359, 1979.

7. E. M. Altmann. Near-term memory in programming: A simulation-
based analysis. International Journal of Human-Computer Studies,
54:189–210, 2001.

8. E. M. Altmann. Functional decay of memory for tasks. Psycholog-
ical Research, 66(4):287–297, 2002.

9. AMD. Software Optimization Guide for AMD Athlon 64 and AMD
Opteron Processors. Advanced Micro Devices, Inc, 3.03 edition,
Sept. 2002.

10. J. R. Anderson. Interference: The relationship between response la-
tency and response accuracy. Journal of Experimental Psychology:
Human Learning and Memory, 7(5):326–343, 1981.

11. J. R. Anderson. Cognitive Psychology and its Implications. Worth
Publishers, fifth edition, 2000.

12. J. R. Anderson. Learning and Memory. John Wiley & Sons, Inc,
second edition, 2000.

13. J. R. Anderson and C. Libiere. The Atomic Components of Thought.
Lawrence Erlbaum Associates, 1998.

14. J. R. Anderson and R. Milson. Human memory: An adaptive
perspective. Psychological Review, 96(4):703–719, 1989.

15. Anon. Tendra home page. www.tendra.org, 2003.
16. Anon. Top 500 supercomputer sites. www.top500.org, 2003.
17. Anon. Trimaran home page. www.trimaran.org, 2003.
18. A. W. Appel. Compiling with Continuations. Cambridge University

Press, 1992.
19. H. R. Arkes, R. M. Dawes, and C. Christensen. Factors influencing

the use of a decision rule in a probabilistic task. Organizational
Behavior and Human Decision Processes, 37:93–110, 1986.

20. B. Armstrong and R. Eigenmann. Performance forecasting: Char-
acterization of applications on current and future architectures.
Technical Report ECE-HPCLab-97202, Purdue University School
of ECE, Jan. 1997.

21. J. Backus. The history of FORTRAN I, II, and III. SIGPLAN No-
tices, 13(8):165–180, 1978.

22. D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler trans-
formations for high-performance computing. Technical Report
UCB/CSD-93-781, University of California, Berkeley, 1993.

23. A. Baddeley. Working memory: Looking back and looking for-
ward. Nature Reviews, 4(10):829–839, Oct. 2003.

24. A. Baddeley, M. Conway, and J. Aggleton. Episodic Memory: New
Directions in Research. Oxford University Press, 2002.

25. A. D. Baddeley. Essentials of Human Memory. Psychology Press,
1999.

26. A. D. Baddeley, N. Thomson, and M. Buchanan. Word length and
the structure of short-term memory. Journal of Verbal Learning
and Verbal Behavior, 14:575–589, 1975.

27. I. Bahar, B. Calder, and D. Grunwald. A comparison of software
code reordering and victim buffers. ACM SIGARCH Computer
Architecture News, Mar. 1999.

28. H. P. Bahrick. Semantic memory content in permastore: Fifty years
of memory for Spanish learned in school. Journal of Experimental
Psychology: General, 113(1):1–26, 1984.

29. J. N. Bailenson, M. S. Shum, and J. D. Coley. A bird’s eye view:
Biological categorization and reasoning within and across cultures.
Cognition, 84:1–53, 2002.

30. J. L. Bailey and G. Stefaniak. Industry perceptions of the knowl-
edge, skills, and abilities needed by computer programmers. In
Proceedings of the 2001 ACM SIGCPR Conference on Computer
Personnel Research (SIGCPR 2001), pages 93–99. ACM Press,
2001.

31. R. D. Banker and S. A. Slaughter. The moderating effects of struc-
ture on volatility and complexity in software enhancement. Infor-
mation Systems Research, 11(3):219–240, Sept. 2000.

32. S. Bansal and A. Aiken. Automatic generation of peephole super-
optimizers. In Proceedings of the 12th International conference on
Architectural support for programming languages and operating
systems, pages 394–403, Apr. 2006.

33. P. Banyard and N. Hunt. Something missing? The Psychologist,
13(2):68–71, 2000.

34. J. H. Barkow, L. Cosmides, and J. Tooby. The Adapted Mind:
Evolutionary Psychology and the Generation of Culture. Oxford
University Press, 1992.

35. V. R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull,
S. Sørumgård, and M. V. Zelkowitz. The empirical investigation
of perspective-based reading. Empirical Software Engineering: An
International Journal, 1(2):133–164, 1996.

36. K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit,
T. Zhang, and B. Jacob. The performance and energy consumption
of embedded real-time operating systems. In Proceedings of the
International Conference on Compilers, Architecture, and Synthe-
sis for Embedded Systems CASES’01, pages 203–210. ACM Press,
Nov. 2001.

37. L. R. Beach, V. E. Barnes, and J. J. J. Christensen-Szalanski. Be-
yond heuristics and biases: A contingency model of judgmental
forecasting. Journal of Forecasting, 5:143–157, 1986.

38. B. Beizer. Software Testing Techniques. Van Nostrand Reinhold,
second edition, 1990.

39. G. Bell and J. Gray. High performance computing: Crays, clus-
ters, and centers. what next? Technical Report MSR-TR-2001-76,
Microsoft Research, Sept. 2001.

40. M. E. Benitez and J. W. Davidson. Target-specific global code
improvement: Principles and applications. Technical Report Tech-
nical Report CS-94-42, University of Virginia, 1994.

41. Y. Benkler. Coase’s penguin, or, Linux and the nature of the firm.
The Yale Law Journal, 112(3), Dec. 2002.

42. D. C. Berry and D. E. Broadbent. On the relationship between
task performance and associated verbalized knowledge. Quarterly
Journal of Experimental Psychology, 36A:209–231, 1984.

v 1.1 January 30, 2008

www.tendra.org
www.top500.org
www.trimaran.org

43. R. Bhargava, J. Rubio, S. Kannan, and L. K. John. Understanding
the impact of X86/NT computing on microarchitecture. In L. K.
John and A. M. G. Maynard, editors, Characterization of Contem-
porary Workloads, chapter 10, pages 203–228. Kluwer Academic
Publishers, 2001.

44. S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software syn-
thesis and code generation for signal processing systems. Technical
Report CS-TR-4063, University of Maryland, College Park, Sept.
1999.

45. J. M. Bieman and V. Murdock. Finding code on the world wide
web: A preliminary investigation. In Proceedings First Inter-
national Workshop on Source Code Analysis and Manipulation
(SCAM2001), pages 73–78, 2001.

46. S. Bikhchandani, D. Hirshleifer, and I. Welch. A theory of fads,
fashion, custom, and cultural change as information cascades. Jour-
nal of Political Economy, 100(5):992–1026, 1992.

47. S. Blackmore. The Meme Machine. Oxford University Press,
1999.

48. T. Bonk and U. Rüde. Performance analysis and optimization of
numerically intensive programs. Technical Report SFB Bericht
342/26/92 A, Technische Universität München, Germany, Nov.
1992.

49. G. H. Bower, M. C. Clark, A. M. Lesgold, and D. Winzenz. Hierar-
chical retrieval schemes in recall of categorized word lists. Journal
of Verbal Learning and Verbal Behavior, 8:323–343, 1969.

50. M. G. Bradac, D. E. Perry, and L. G. Votta. Prototyping A process
monitoring experiment. IEEE Transactions on Software Engineer-
ing, 20(10):774–784, 1994.

51. G. L. Bradshaw and J. R. Anderson. Elaborative encoding as an
explanation of levels of processing. Journal of Verbal Learning
and Verbal Behavior, 21:165–174, 1982.

52. R. A. Brealey and S. C. Myers. Principles of Corporate Finance.
Irwin McGraw–Hill, 2000.

53. E. J. Breen. Extensible Interactive C. eic.sourceforge.net,
June 2000.

54. A. Brooks, J. Daly, J. Miller, M. Roper, and M. Wood. Replication
of experimental results in software engineering. Technical Report
ISERN-96-10, Department of Computer Science, University of
Strathclyde, Livingstone Tower, Richmond Street, Glasgow G1
1XH, UK, 1996.

55. T. Budd. An APL Compiler. Springer-Verlag, 1988.

56. D. Burger, J. R. Goodman, and A. Kägi. Memory bandwidth lim-
itations of future microprocessors. In 23rd Annual International
Symposium on Computer Architecture, pages 78–89, 1996.

57. Q. L. Burrell. A note on ageing in a library circulation model.
Journal of Documentation, 41(2):100–115, 1985.

58. M. D. Byrne and S. Bovair. A working memory model of a com-
mon procedural error. Cognitive Science, 21(1):31–61, 1997.

59. C. F. Camerer and E. F. Johnson. The process-performance para-
dox in expert judgment: How can the experts know so much and
predict so badly? In K. A. Ericsson and J. Smith, editors, Towards
a general theory of expertise: Prospects and limits. Cambridge
University Press, 1991.

60. M. C. Carlisle. Olden: Parallelizing Programs with Dynamic Data
Structures on Distributed-Memory Machines. PhD thesis, Prince-
ton University, June 1996.

61. R. E. Carlson, B. H. Khoo, R. G. Yaure, and W. Schneider. Acqui-
sition of a problem-solving skill: Levels of organization and use of

working memory. Journal of Experimental Psychology: General,
119(2):193–214, 1990.

62. E. Carmel and S. Becker. A process model for packaged software
development. IEEE Transactions on Engineering Management,
41(5):50–61, 1995.

63. K. A. Cassell. Tools for the analysis of large PROLOG programs.
Thesis (m.s.), University of Texas at Austin, Austin, TX, 1985.

64. R. G. G. Cattell. Automatic derivation of code generators from ma-
chine descriptors. ACM Transactions on Programming Languages
and Systems, 2(2):173–190, 1980.

65. J. P. Cavanagh. Relation between the immediate memory span and
the memory search rate. Psychological Review, 79(6):525–530,
1972.

66. W. G. Chase and K. A. Ericsson. Skill and working memory. In
G. H. Bower, editor, The Psychology of Learning and Motivation,
pages 1–58. Academic, 1982.

67. J. B. Chen. The Impact of Software Structure and Policy on CPU
and Memory System Performance. PhD thesis, Carnegie Mellon
University, May 1994.

68. P. Cheng, K. J. Holyoak, R. E. Nisbett, and L. M. Oliver. Prag-
matic versus syntactic approaches to training deductive reasoning.
Cognitive Psychology, 18:293–328, 1986.

69. R. J. Chevance and T. Heidet. Static profile and dynamic behav-
ior of COBOL programs. SIGPLAN Notices, 13(4):44–57, Apr.
1978.

70. T. M. Chilimbi. On the stability of temporal data reference pro-
files. In International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 151–162, Sept. 2001.

71. R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.
Moebus, B. K. Ray, and M.-Y. Wong. Orthogonal defect classifica-
tion – A concept for in-process measurements. IEEE Transactions
on Software Engineering, 18(11):943–956, Nov. 1992.

72. A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empiri-
cal study of operating system errors. In Symposium on Operating
Systems Principles, SOSP’01, pages 73–88, 2001.

73. S. Chulani, B. Boehm, and B. Steece. Calibrating software cost
models using bayesian analysis. Technical Report USC-CSE-98-
508, American Science Institute of Technology, 1998.

74. M. Ciolkowski, C. Differding, O. Laitenberger, and J. Munch. Em-
pirical investigation of perspective-based reading: a replicated ex-
periment. Technical Report Technical Report ISERN-97-13, Fraun-
hofer Institute for Experimental Software Engineering, University
of Kaiserlautern: Kaiserlautern, 1997.

75. D. W. Clark and C. C. Green. An empirical study of list structure
in Lisp. Communications of the ACM, 20(2):78–87, Feb. 1977.

76. R. F. Cmelik, S. I. Kong, D. R. Ditzel, and E. J. Kelly. An analysis
of MIPS and SPARC instruction set utilization on the SPEC bench-
marks. In Proceedings of the fourth international conference on
Architectural support for programming languages and operating
systems, pages 290–301, 1991.

77. R. Cohn and P. G. Lowney. Design and analysis of profile-based
optimization in Compaq’s compilation tools for alpha. Journal of
Instruction-Level Parallelism, 3:1–25, 2000.

78. A. M. Collins and M. R. Quillian. Retrieval time from semantic
memory. Journal of Verbal Learning and Verbal Behavior, 8:240–
247, 1969.

79. R. Colom, I. Rebollo, A. Palacios, M. Juan-Espinosa, and P. C.
Kyllonen. Working memory is (almost) perfectly predicted by g.
Intelligence, 32:277–296, 2004.

January 30, 2008 v 1.1

eic.sourceforge.net

80. S. P. Consortium. Ada 95 quality and style guide: Guidelines for
professional programmers. Technical Report SPC-94093-CMC
Version 01.00.10, Software Productivity Consortium, Oct. 1995.

81. D. Conway. Perl Best Practices. O’Reilly, 2005.

82. J. O. Coplien. Advanced C++ Programming Styles and Idioms.
Addison–Wesley, 1991.

83. L. Cosmides and J. Tooby. Evolutionary psychology: A primer.
Technical report, Center for Evolutionary Psychology, University
of California, Santa Barbara, 1998.

84. J. D. Couger and M. A. Colter. Maintenance Programming:
Improving Productivity Through Motivation. Prentice-Hall, Inc,
1985.

85. N. S. Coulter and N. H. Kelly. Computer instruction set usage by
programmers: An empirical investigation. Communications of the
ACM, 29(7):643–647, July 1986.

86. M. A. Covington. Some coding guidelines for Prolog. www.ai.
uga.edu/mc, 2001.

87. N. Cowan. Attention and Memory: An Integrated Framework. Ox-
ford University Press, 1997.

88. N. Cowan. The magical number 4 in short-term memory: A re-
consideration of mental storage capacity. Behavioral and Brain
Sciences, 24(1):87–185, 2001.

89. E. R. F. W. Crossman. A theory of the acquisition of speed-skill.
Ergonomics, 2:153–166, 1959.

90. M. Csikszenthmihalyi. Flow: The Psychology of Optimal Experi-
ence. Harper Perennial, 1990.

91. J. Darley and C. D. Batson. From Jerusalem to Jericho: A study of
situational and dispositional variables in helping behavior. Journal
of Personality and Social Psychology, 27(1):100–108, 1973.

92. R. Dattero and S. D. Galup. Programming languages and gender.
Communications of the ACM, 47(1):99–102, Jan. 2004.

93. T. H. Davenport and J. C. Beck. The Attention Economy. Harvard
Business School Press, 2001.

94. J. W. Davidson, J. R. Rabung, and D. B. Whalley. Relating static
and dynamic machine code measurements. Technical Report CS-
89-03, Department of Computer Science, University of Virginia,
July 13 1989.

95. J. W. Davison, D. M. Mand, and W. F. Opdyke. Understanding
and addressing the essential costs of evolving systems. Bell Labs
Technical Journal, 5(2):44–54, Apr.-June 2000.

96. G. C. S. de Araújo. Code Generation Algorithms for Digital Signal
Processors. PhD thesis, Princeton University, 1997.

97. I. J. Deary and C. Stough. Intelligence and inspection time. Ameri-
can Psychologist, 51(6):599–608, 1996.

98. A. Degani and E. L. Wiener. On the design of flight-deck proce-
dures. Technical Report 177642, NASA Ames Research Center,
June 1994.

99. B. Demoen and G. Maris. A comparison of some schemes for trans-
lating logic to C. In ICLP Workshop: Parallel and Data Parallel
Execution of Logic Programs, pages 79–91, 1994.

100. H. G. Dietz and T. I. Mattox. Compiler optimizations using data
compression to decrease address reference entropy. In LCPC ’02:
15th Workshop on Languages and Compilers for Parallel Comput-
ing, July 2002.

101. D. K. Dirlam. Most efficient chunk sizes. Cognitive Psychology,
3:355–359, 1972.

102. K. M. Dixit. Overview of the SPEC benchmarks. In J. Gray, editor,
The Benchmark Handbook, chapter 9, pages 489–521. Morgan
Kaufmann Publishers, 1993.

103. T. Dybå, V. B. Kampenes, and D. I. K. Sjøberg. A systematic
review of statistical power in software engineering experiments.
Information and Software Technology, 48(8):745–755, 2006.

104. H. Ebbinghaus. Memory: A contribution to experimental psychol-
ogy. Dover Publications, 1987.

105. L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. How in-
put data sets change program behaviour. In Fifth Workshop on
Computer Architecture Evaluation using Commercial Workloads
(CAECW’02), Feb. 2002.

106. S. G. Eick, T. Graves, A. F. Karr, J. S. Marron, and A. Mockus.
Does code decay? Assessing the evidence from change manage-
ment data. IEEE Transactions on Software Engineering, 27(1):1–
12, 2001.

107. H. J. Einhorn. Accepting error to make less error. Journal of Per-
sonality Assessment, 50:387–395, 1986.

108. N. C. Ellis and R. A. Hennelly. A bilingual word-length effect:
Implications for intelligence testing and the relative ease of mental
calculation in Welsh and English. British Journal of Psychology,
71:43–51, 1980.

109. J. L. Elshoff. A numerical profile of commercial PL/I programs.
Software–Practice and Experience, 6:505–525, 1976.

110. K. E. Emam and I. Wieczorek. The repeatability of code de-
fect classifications. Technical Report Technical Report ISERN-98-
09, Fraunhofer Institute for Experimental Software Engineering,
1998.

111. J. Engblom. Why SpecInt95 should not be used to benchmark
embedded systems tools. ACM SIGPLAN Notices, 34(7):96–103,
July 1999.

112. K. A. Ericsson and N. Charness. Expert performance. American
Psychologist, 49(8):725–747, 1994.

113. K. A. Ericsson, R. T. Krampe, and C. Tesch-Romer. The role of de-
liberate practice in the acquisition of expert performance. Psycho-
logical Review, 100:363–406, 1993. also University of Colorado,
Technical Report #91-06.

114. K. A. Ericsson and A. C. Lehmann. Expert and exceptional perfor-
mance: Evidence of maximal adaption to task constraints. Annual
Review of Psychology, 47:273–305, 1996.

115. M. D. Ernst, G. J. Badros, and D. Notkin. An empirical analysis of
C preprocessor use. IEEE Transactions on Software Engineering,
28(12):1146–1170, 2002.

116. W. K. Estes. Classification and Cognition. Oxford University Press,
1994.

117. K. Ewusi-Mensah and Z. H. Przasnyski. On information systems
project abandonment: An exploratory study of organizational prac-
tices. MIS Quarterly, 15(1):67–86, Mar. 1991.

118. M. W. Eysenck and M. T. Keane. Cognitive Psychology: A Stu-
dent’s Handbook. Psychology Press, fourth edition, 2000.

119. C. Fagot. Chronometric investigations of task switching. PhD the-
sis, University of California, San Diego, 1994.

120. R. Falk and C. Konold. Making sense of randomness: Implicit en-
coding as a basis for judgment. Psychological Review, 104(2):301–
318, 1997.

121. R. J. Fateman. Software fault prevention by language choice: Why
C is not my favorite language. University of California at Berkeley,
1999.

v 1.1 January 30, 2008

www.ai.uga.edu/mc
www.ai.uga.edu/mc

122. J. M. Favaro. Value based software reuse investment. Annals of
Software Engineering, 5:5–52, 1998.

123. J. Feldman. Minimization of boolean complexity in human concept
learning. Nature, 407:630–633, Oct. 2000.

124. N. E. Fenton and M. Neil. A critique of software defect prediction
models. IEEE Transactions on Software Engineering, 25(3):675–
689, 1999.

125. N. E. Fenton and M. Neil. Software metrics: Roadmap. In
A. Finkelstein, editor, The Future of Software Engineering, pages
357–370. ACM Press, 2000.

126. N. E. Fenton and S. L. Pfleeger. Software Metrics. PWS Publishing
Company, second edition, 1997.

127. S. Feuerstein. Oracle PL/SQL Best Practices. O’Reilly, 2001.
128. K. Fiedler. The dependence of the conjunction fallacy on subtle

linguistic factors. Psychological Research, 50:123–129, 1988.
129. G. J. Fitzsimons and B. Shiv. Non-conscious and contaminative

effects of hypothetical questions on subsequent decision making.
Journal of Consumer Research, 28:224–238, Sept. 2001.

130. B. Foote and J. Yoder. Big ball of mud. In Fourth Conference on
Pattern Languages of Programs (PLoP) 1997, 1997.

131. W. B. Frakes, C. J. Fox, and B. A. Nejmeh. Software Engineering
in the Unix/C Environment. Prentice Hall, Inc, 1991.

132. C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: De-
sign and Implementation. Benjamin/Cummings Pub. Co., Red-
wood City, CA, USA, 1995.

133. S. Frederick, G. Loewenstein, and T. O’Donoghue. Time discount-
ing: A critical review. Journal of Economic Literature, 40(2):351–
401, 2002.

134. M. Fredericks. Using defect tracking and analysis to improve soft-
ware quality. Thesis (m.s.), Department of Computer Science,
University of Maryland, 1999.

135. D. P. Freedman and G. M. Weinberg. Handbook of Walkthroughs,
Inspections, and Technical Reviews. Dorset House Publishing,
1990.

136. W.-T. Fu and W. D. Gray. Memory versus perceptual-motor trade-
offs in a blocks world task. In Proceedings of the Twenty-second
Annual Conference of the Cognitive Science Society, pages 154–
159, Hillsdale, NJ, 2000. Erlbaum.

137. H. Gall, M. Jazayeri, R. R. Klösch, and G. Trausmuth. Software
evolution observations based on product release history. In Pro-
ceedings of the International Conference on Software Maintenance
(ICSM’97, pages 160–166, 1997.

138. H. Gardner. Intelligence Reframed. Basic Books, 1999.
139. S. E. Gathercole, S. J. Pickering, C. Knight, and Z. Stegmann.

Working memory skills and education attainment: Evidence form
national curriculum assessments at 7 and 14 years of age. Applied
Cognitive Psychology, 18(1):1–16, 2004.

140. S. A. Gelman and E. M. Markman. Categories and induction in
young children. Cognition, 23:183–209, 1986.

141. R. A. Ghosh, R. Glott, B. Krieger, and G. Robles. Free/Libre and
open source software survey and study, part 4: Survey of develop-
ers. Technical Report Deliverable D18: Final Report, University
of Maastricht, June 2002.

142. A. Gierlinger, R. Forsyth, and E. Ofner. GEPARD: A parameter-
isable DSP core for ASICS. In Proceedings ICSPAT’97, pages
203–207, 1997.

143. G. Gigerenzer, P. M. Todd, and The ABC Research Group. Simple
Heuristics That Make Us Smart. Oxford University Press, 1999.

144. D. T. Gilbert, R. W. Tafarodi, and P. S. Malone. You can’t not
believe everything you read. Journal of Personality and Social
Psychology, 65(2):221–233, 1993.

145. R. L. Glass. Persistent software errors. IEEE Transactions on Soft-
ware Engineering, 7(2):162–168, Mar. 1981.

146. A. M. Glenberg and W. Epstein. Inexpert calibration of compre-
hension. Memory & Cognition, 15(1):84–93, 1987.

147. M. W. Godfrey and Q. Tu. Evolution in open source software:
A case study. In Proceedings of the International Conference on
Software Maintenance (ICSM’00), pages 131–142, Oct. 2000.

148. R. A. Goldberg, S. Schwartz, and M. Stewart. Individual differ-
ences in cognitive processes. Journal of Educational Psychology,
69(1):9–14, 1977.

149. E. E. Grant and H. Sackman. An exploratory investigation of pro-
grammer performance under on-line and off-line conditions. IEEE
Transactions on Human Factors in Electronics, 8(1):33–48, Mar.
1967.

150. T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault
incidence using software change history. IEEE Transactions on
Software Engineering, 26(7):653–661, 2000.

151. P. Grice. Studies in the Way of Words. Harvard University Press,
1989.

152. R. E. Griswold, J. F. Poage, and I. P. Polonsky. The SNOBOL 4 Pro-
gramming Language. Prentice Hall, Inc, second edition, 1968.

153. A. J. M. Groenewegen and W. A. Waganaar. Diagnosis in everyday
situations: Limitations of performance at the knowledge level. Unit
of Experimental Psychology, Leiden University, 1988.

154. D. Grune, H. E. Bel, C. J. H. Jacobs, and K. G. Langerndoen.
Modern Compiler Design. John Wiley & Sons, Ltd, 2000.

155. R. Gupta, E. Mehofer, and Y. Zhang. Profile guided compiler opti-
mizations. In Y. N. Srikant and P. Shankar, editors, The Compiler
Design Handbook: Optimizations and Machine Code Generation,
chapter 4, pages 143–174. CRC Press, 2002.

156. K. Hajek. Detection of logical coupling based on product release
history. Thesis (m.s.), Technical University of Vienna, 1998.

157. G. S. Halford, W. H. Wilson, and S. Phillips. Processing capacity
defined by relational complexity: Implications for comparative,
developmental, and cognitive psychology. Behavioral & Brain
Sciences, 21(6):803–831, 1998.

158. D. Z. Hambrick and R. W. Engle. Effect of domain knowledge,
working memory capacity, and age on cognitive performance: An
investigation of the knowledge-is-power hypothesis. Cognitive
Psychology, 44(4):339–387, 2002.

159. K. R. Hammond, R. M. Hamm, J. Grassia, and T. Pearson. Direct
comparison of the efficacy of intuitive and analytical cognition
in expert judgment. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-17:753–770, Sept. 1987.

160. A. H. Hashemi, D. R. Kaeli, and B. Calder. Efficient procedure
mapping using cache line coloring. Technical Report Research
Report 96/3, Compaq Western Research Laboratory, 1996.

161. L. Hatton. Safer C : Developing Software for High-integrity and
Safety-critical Systems. McGraw–Hill, 1995.

162. L. Hatton. The T-experiments: Errors in scientific software. IEE
Computational Science & Engineering, 4(2):27–38, Jan. 1997.

163. J. L. Hennessy and D. A. Patterson. Computer Architecture A Quan-
titative Approach. Morgan Kaufmann Publishers, Inc, 1996.

164. M. Henricson and E. Nyquist. Industrial Strength C++, Rules and
Recommendations. Prentice Hall, Inc, 1997.

January 30, 2008 v 1.1

165. R. N. A. Henson. Short-term Memory for Serial Order. PhD thesis,
University of Cambridge, Nov. 1996.

166. D. M. B. Herbert and J. S. Burt. What do students remember?
Episodic memory and the development of schematization. Applied
Cognitive Psychology, 18(1):77–88, 2004.

167. D. S. Herrmann. Software Safety and Reliability. IEEE Computer
Society, 1999.

168. R. Hertwig and G. Gigerenzer. The ’conjunction fallacy’ revisited:
How intelligent inferences look like reasoning errors. Journal of
Behavioral and Decision Making, 12(2):275–305, 1999.

169. R. Hertwig and P. M. Todd. More is not always better: The benefits
of cognitive limits. In L. Macchi and D. Hardman, editors, The
psychology of reasoning and decision making: A handbook. John
Wiley & Sons, Inc, 2000?

170. R. M. Hogarth and H. J. Einhorn. Order effects in belief updat-
ing: The belief-adjustment model. Cognitive Psychology, 24:1–55,
1992.

171. R. M. Hogarth, C. R. M. McKenzie, B. J. Gibbs, and M. A. Mar-
quis. Learning from feedback: Exactness and incentives. Journal
of Experimental Psychology: Learning, Memory, and Cognition,
17(4):734–752, 1991.

172. J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard.
Induction. The MIT Press, 1989.

173. A. A. Hook, B. Brykczynski, C. W. McDonald, S. H. Nash, and
C. Youngblut. A survey of computer programming languages cur-
rently used in the department of defense. Technical Report P-3054,
Institute for Defense Analyse, Jan. 1995.

174. R. Hoosain. Correlation between pronunciation speed and digit
span size. Perception and Motor Skills, 55:1128–1128, 1982.

175. R. Hoosain and F. Salili. Language differences, working memory,
and mathematical ability. In M. M. Grunberg, P. E. Morris, and
R. N. Sykes, editors, Practical aspects of memory: Current re-
search and issues, volume 2, pages 512–517. John Wiley & Sons,
Inc, 1988.

176. M. R. Horton. Portable C Software. Prentice-Hall, Upper Saddle
River, NJ 07458, USA, 1990.

177. C.-H. Hsu and U. Kremer. The design, implementation, and evalu-
ation of a compiler algorithm for CPU energy reduction. In Pro-
ceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pages 38–8, 2003.

178. C.-H. Hsu, U. Kremer, and M. Hsiao. Compiler-directed dynamic
frequency and voltage scheduling. Technical Report DCS-TR-419,
Department of Computer Science, Rutgers University, 2000.

179. Intel. Desktop Performance and Optimization for Intel Pentium 4
Processor. Intel, Inc, Feb. 2001.

180. ISO. ISO 6160-1979(E) —Programming languages —PL/1. ISO,
1979.

181. ISO. ISO 1989-1985(E) —Programming languages —COBOL.
ISO, 1985.

182. ISO. Implementation of ISO/IEC TR 10034:1990 Guidelines for
the preparation of conformity clauses in programming language
standards. ISO, 1990.

183. ISO. ISO/IEC 9945-1:1990 Information technology —Portable
Operating System Interface (POSIX). ISO, 1990.

184. ISO. ISO/IEC Guide 25:1990 General requirements for the compe-
tence of calibration and testing laboratories. ISO, 1990.

185. ISO. Implementation of ISO/TR 9547:1988 Programming language
processors —Test methods —Guidelines for their development and
acceptability. ISO, 1991.

186. ISO. ISO/IEC 10206:1991 Information technology —Program-
ming languages —Extended Pascal. ISO, 1991.

187. ISO. ISO/IEC 1539:1992 Information technology —Programming
languages —FORTRAN. ISO, 1991.

188. ISO. ISO/IEC 9075:1992(E) Information technology —Database
languages —SQL. ISO, 1992.

189. ISO. ISO/IEC 8652:1995(E) Information technology —Program-
ming languages —Annotated Ada Reference Manual. ISO, 1995.

190. ISO. ISO/IEC 10514-1:1996 Information technology —Program-
ming languages —Part 1. Modula-2, Base language. ISO, 1996.

191. ISO. Implementation of ISO/IEC TR 10176:1997 Information tech-
nology —Guidelines for the preparation of programming language
standards. ISO, 1997.

192. ISO. ISO/IEC 13816:1997 Information technology —Program-
ming languages, their environments and system software interfaces
—Programming language ISLISP. ISO, 1997.

193. ISO. ISO/IEC 13210:1999 Information technology —Requirements
and guidelines for test methods specifications and test method im-
plementation for measuring conformance to POSIX standards.
ISO, 1999.

194. ISO. ISO/IEC 13751.2:2000 Information technology —Program-
ming languages, their environments and system software interfaces
—Programming language Extended APL. ISO, 2000.

195. ISO. ISO/IEC TR 15942:2000 Programming languages —Guide
for the Use of the Ada Programming Language in High Integrity
Systems. ISO, 2000.

196. ISO. ISO/IEC 9496:2003 CHILL —The ITU-T programming lan-
guage. ISO, 2003.

197. S. A. J. The seer-sucker theory: The value of experts in forecasting.
Technology Review, pages 16–24, June-July 1980.

198. R. Jaeschke. Portability and the C Language. Hayden Books, 4300
West 62nd Street, Indianapolis, IN 46268, USA, 1989.

199. P. J. Jalics. COBOL on a PC: A new perspective on a language
and its performance. Communications of the ACM, 30(2):142–154,
Feb. 1987.

200. M. K. Johansen and T. J. Palmeri. Are there representational shifts
during category learning? Cognitive Psychology, 45(4):482–553,
2002.

201. S. C. Johnson. A tour through the portable C compiler. In B. W.
Kernighan and M. D. McIlroy, editors, Unix Programmer’s Man-
ual, 7th edition, Volume 2B, chapter 33. Bell Laboratories, Murray
Hill, NJ, Jan. 1979. Republished by Holt, Rinehart and Winston,
New York, ISBN 0-03-061743-X, 1983.

202. C. Jones. Programming Productivity. McGraw–Hill Book Com-
pany, 1986.

203. D. M. Jones. The Model C Implementation. Knowledge Software
Ltd, 1992.

204. D. M. Jones. The 7±2 urban legend. MISRA C 2002 conference
http://www.knosof.co.uk/cbook/misart.pdf, Oct. 2002.

205. J. Jonides and C. M. Jones. Direct coding for frequency of occur-
rence. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 18(2):368–378, 1992.

206. M. Jørgensen. A review of studies on expert estimation of software
development effort. Journal of Systems and Software, 70(1-2):37–
60, 2004.

207. M. Jørgensen and D. I. K. Sjøberg. Impact of experience on main-
tenance skills. Journal of Software Maintenance: Research and
Practice, 14(2):123–146, 2002.

v 1.1 January 30, 2008

http://www.knosof.co.uk/cbook/misart.pdf

208. N. P. Jouppi and P. Ranganathan. The relative importance of mem-
ory latency, bandwidth, and branch limits to performance. In Pro-
ceedings of Workshop of Mixing Logic and DRAM: Chips that
Compute and Remember, June 1997.

209. D. M. Kagan and J. M. Douthat. Personality and learning FOR-
TRAN. International Journal of Man-Machine Studies, 22(4):395–
402, 1985.

210. D. Kahneman, P. Slovic, and A. Tversky, editors. Judgment under
uncertainty: Heuristics and biases. Cambridge University Press,
1982.

211. D. Kahneman and A. Tversky. On the psychology of prediction.
In D. Kahneman, P. Slovic, and A. Tversky, editors, Judgment
under uncertainty: Heuristics and biases, chapter 4, pages 48–68.
Cambridge University Press, 1982.

212. D. Kahneman and A. Tversky. Subjective probability: A judgment
of representativeness. In D. Kahneman, P. Slovic, and A. Tver-
sky, editors, Judgment under uncertainty: Heuristics and biases,
chapter 3, pages 32–47. Cambridge University Press, 1982.

213. D. Kahneman and A. Tversky. Choices, values, and frames. In
D. Kahneman and A. Tversky, editors, Choices, Values, and
Frames, chapter 1, pages 1–16. Cambridge University Press,
1999.

214. D. Kahneman and A. Tversky. Prospect theory: An analysis of deci-
sion under risk. In D. Kahneman and A. Tversky, editors, Choices,
Values, and Frames, chapter 2, pages 17–43. Cambridge University
Press, 1999.

215. S. Kahrs. Mistakes and ambiguities in the definition of standard
ML. Technical Report LFCS report ECS-LFCS-93-257, University
of Edinburgh, Scotland, Apr. 1993.

216. Y. Kareev. Seven (indeed, plus or minus two) and the detection of
correlations. Psychological Review, 107(2):397–402, 2000.

217. R. Kelsey, W. Clinger, J. Rees, H. Abelson, R. K. Dybvig, C. T.
Haynes, G. J. Rozas, N. I. A. IV, D. P. Friedman, E. Kohlbecker,
G. L. Steele JR., D. H. Bartley, R. Halstead, D. Oxley, G. J. Suss-
man, G. Brooks, C. Hanson, K. M. Pitman, and M. Wand. Revised5

report on the algorithmic language Scheme. Technical report, Feb.
1998.

218. C. K. Kemerer and S. Slaughter. An empirical approach to studying
software evolution. IEEE Transactions on Software Engineering,
25(4):493–503, 1999.

219. B. W. Kernighan and R. Pike. The Practice of Programming. Addi-
son–Wesley, 1999.

220. D. E. Kieras and D. E. Meyer. An overview of the EPIC architecture
for cognition and performance with application to human-computer
interaction. Technical Report TR-95/ONR-EPIC-5, University of
Michigan, 1995.

221. T. Kistler and M. Franz. Continuous program optimization: A case
study. Technical Report Technical Report No. 00-19, Department
of Information and Computer Science, University of California,
Irvine, 2000.

222. D. Klahr, W. G. Chase, and E. A. Lovelace. Structure and pro-
cess in alphabetic retrieval. Journal of Experimental Psychology:
Learning, Memory and Cognition, 9(3):462–477, 1983.

223. J. Klayman and Y.-W. Ha. Confirmation, disconfirmation, and in-
formation in hypothesis testing. Psychological Review, 94(2):211–
228, 1987.

224. J. Klayman, J. B. Soll, C. Gonz/’alez-Vallejo, and S. Barlas. Over-
confidence: It depends on how, what, and whom you ask. Organi-
zational Behavior and Human Decision Processes, 79(3):216–247,
1999.

225. G. Klein. Sources of Power. The MIT Press, 1999.

226. J. L. Knetsch. The endowment effect and evidence of nonreversible
indifference curves. In D. Kahneman and A. Tversky, editors,
Choices, Values, and Frames, chapter 9, pages 171–179. Cam-
bridge University Press, 1999.

227. D. E. Knuth. An empirical study of FORTRAN programs. Soft-
ware–Practice and Experience, 1:105–133, 1971.

228. D. E. Knuth. The errors of TEX. Software–Practice and Experience,
19(7):607–685, 1989.

229. J. J. Koehler. The base rate fallacy reconsidered: Descriptive, nor-
mative and methodological challenges. Behavior & Brain Sciences,
19(1):1–17, 1996.

230. A. Koenig. C Traps and Pitfalls. Addison–Wesley, 1989.

231. A. Koriat. How do we know that we know? The accessibility model
of the feeling of knowing. Psychological Review, 100(4):609–639,
1993.

232. A. Koriat, M. Goldsmith, and A. Pansky. Toward a psychology
of memory accuracy. Annual Review of Psychology, 51:481–537,
2000.

233. S. M. Kosslyn and S. P. Shwartz. Empirical constraints on the-
ories of visual imagery. In J. Long and A. D. Baddeley, editors,
Attention and Performance IX, pages 241–260. Lawrence Erlbaum
Associates, 1981.

234. R. J. Koubek, W. K. LeBold, and G. Salvendy. Predicting perfor-
mance in computer programming courses. Behavior and Informa-
tion Technology, 4(2):113–129, 1985.

235. C. B. Kreitzberg and B. Shneiderman. The elements of FORTRAN
style: techniques for effective programming. Harcourt, Brace, Jo-
vanovich, San Diego, CA, USA, 1972.

236. I. Krsul. Authorship analysis: Identifying the author of a program.
Technical Report Purdue Technical Report CSD-TR-94-030, De-
partment of Computer Sciences, Purdue University, 1994.

237. I. Krsul and E. H. Spafford. Authorship analysis: Identifying the au-
thor of a program. Technical Report Technical Report TR-96-052,
Department of Computer Sciences, Purdue University, 1996.

238. L. E. Krueger. A theory of perceptual matching. Psychological
Review, 85(4):278–304, 1978.

239. O. Laitenberger and J.-M. DeBaud. Perspective-based reading of
code documents at Robert Bosch GmbH. Technical Report Tech-
nical Report ISERN-97-14, Fraunhofer Institute for Experimental
Software Engineering, 1997.

240. O. Laitenberger and J.-M. DeBaud. An encompassing life-cycle
centric survey of software inspection. Technical Report Techni-
cal Report ISERN-98-32, Fraunhofer Institute for Experimental
Software Engineering, 1998.

241. O. Laitenberger, K. E. Emam, and T. Harbich. An internally repli-
cated quasi-experimental comparison of checklist and perspective-
based reading of code documents. Technical Report Technical
Report ISERN-99-01, Fraunhofer Institute for Experimental Soft-
ware Engineering, 1999.

242. J. Lakos. Large Scale C++ Software Design. Addison–Wesley,
1996.

243. T. K. Landauer. How much do people remember? Some estimates
of the quantity of learned information in long-term memory. Cog-
nitive Science, 10:477–493, 1986.

244. G. Langdale. The Effect of Profile Choice and Profile Gather-
ing Methods on Profile-Driven Optimization Systems. PhD thesis,
Carnegie Mellon University, Oct. 2003.

January 30, 2008 v 1.1

245. E. J. Langer. The illusion of control. Journal of Personality and
Social Psychology, 32(2):311–328, 1975.

246. D. Lanneer, J. V. Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen,
and G. Goossens. CHESS: Retargetable code generation for em-
bedded DSP processors. In P. Merwedel and G. Goossens, editors,
Code generation for embedded processors, chapter 5, pages 85–
102. Kluwer Academic Publishers, July 1995.

247. K. A. Latorella. Investigating interruptions: Implications for flight-
deck performance. Technical Report NASA/TM-1999-209707,
NASA, Oct. 1999.

248. A. R. Lebeck. Cache conscious programming in undergraduate
computer science. In D. Joyce, editor, Proceedings of the Thirtieth
SIGCSE Technical Symposium on Computer Science Education,
volume 31.1 of SIGCSE Bulletin, pages 247–251, N. Y., Mar. 24–
28 1999. ACM Press.

249. C. Lee, M. Potkonjak, and W. H. Mangione-Smith. MediaBench:
A tool for evaluating and synthesizing multimedia and communi-
cations systems. In Proceedings of the 30th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’97), pages
330–335. IEEE, Dec. 1997.

250. D. C. Lee, P. J. Crowley, J.-L. Baer, T. E. Anderson, and B. N.
Bershad. Execution characteristics of desktop applications on Win-
dows NT. In Proceedings of the 25th Annual International Sympo-
sium on Computer Architecture (ISCA-98), volume 26,3 of ACM
Computer Architecture News, pages 27–38, New York, June 27–
July 1 1998. ACM Press.

251. C. Leen, J. K. Lee, T. T. Hwang, and S.-C. Tsai. Compiler optimiza-
tion on instruction scheduling for low power. In Proceedings of
the 13th International Symposium on System Synthesis (ISSS’00),
2000.

252. D. R. Lehman, R. O. Lempert, and R. E. Nisbett. The effects of
graduate training on reasoning. American Psychologist, 43(6):431–
442, 1988.

253. M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.
Wurski. Metrics and laws of software evolution - the nineties view.
In 4th International Software Metrics Symposium (METRICS ’97),
pages 20–32. IEEE, Nov. 1997.

254. P. Lemaire, H. Abdi, and M. Fayol. The role of working mem-
ory resources in simple cognitive arithmetic. European Journal of
Cognitive Psychology, 8(1):73–103, 1996.

255. T. C. Lethbridge. What knowledge is important to a software pro-
fessional? IEEE Computer, 33(5):44–50, May 2000.

256. T. C. Lethbridge, S. E. Sim, and J. Singer. Software anthropology:
Performing field studies in software companies. 2000.

257. S. Letovsky. Cognitive processes in program comprehension. In
E. Soloway and S. Iyengar, editors, Empirical Studies of Program-
mers, pages 58–79. Ablex Publishing Corporation, 1986.

258. S. Letovsky. Cognitive processes in program comprehension. The
Journal of Systems and Software, 7(4):325–339, Dec. 1987.

259. R. Leupers and P. Marwedel. Retargetable code generation based
on structural processor descriptions. Design Automation for Em-
bedded Systems, 3(1):1–36, Jan. 1998.

260. R. Leupers and P. Marwedel. Retargetable code generation based
on structural processor descriptions. Design Automation for Em-
bedded Systems, 3(1):1–36, Jan. 1998.

261. B. W. Leverett, R. G. G. Cattell, S. O. Hobbs, J. M. Newcomer,
A. H. Reiner, B. R. Schatz, and W. A. Wulf. An overview of the
production-quality compiler-compiler project. Computer, 13(8):38–
49, 1980.

262. P. Lewicki, T. Hill, and E. Bizot. Acquisition of procedural knowl-
edge about a pattern stimuli that cannot be articulated. Cognitive
Psychology, 20:24–37, 1988.

263. E. Y. Li, H.-G. Chen, and W. Cheung. Total quality management
in software development process. The Journal of the Quality As-
surance Institute, 14(1):4–6 & 35–41, Jan. 2000.

264. S. Lichtenstein and B. Fishhoff. Do those who know more also
know more about how much they know? Organizational Behavior
and Human Performance, 20:159–183, 1977.

265. D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental
models and software maintenance. In E. Soloway and S. Iyengar,
editors, Empirical Studies of Programmers, pages 80–98. Ablex
Publishing Corporation, 1986.

266. G. P. Logan. Toward an instance theory of automatization. Psycho-
logical Review, 95(4):492–527, 1988.

267. A. Loginov, S. H. Yong, S. Horowitz, and T. Reps. Debugging
via run-time type checking. In H. Hussmann, editor, Fundamental
Approaches to Software Engineering 4th International Conference
(FASE 2001), pages 217–232. Springer-Verlag, Apr. 2001.

268. J. A. Lucy. Language diversity and thought: A reformulation of
the linguistic relativity hypothesis. Cambridge University Press,
1992.

269. P. Lukowicz, E. A. Heinz, L. Prechelt, and W. F. Tichy. Experimen-
tal evaluation in computer science: a quantitative study. Technical
Report iratr-1994-17, Universität Karlsruhe, Institut für Programm-
strukturen und Datenorganisation, Feb. 1994.

270. A. R. Luria. The mind of a mnemonist. Harvard University Press,
1986.

271. J. N. MacGregor. Short-term memory capacity: Limitation or opti-
mization? Psychological Review, 94(1):107–108, 1987.

272. L. MacKellar. Variations in productivity over the life span: A
review and some implications. Technical Report IR-02-061, In-
ternational Institute for Applied Systems Analysis, Austria, Sept.
2002.

273. C. M. MacLeod, E. B. Hunt, and N. N. Matthews. Individual differ-
ences in the verification of sentence-picture relationships. Journal
of Verbal Learning and Verbal Behavior, 17:493–507, 1978.

274. W. T. Maddox and C. J. Bohil. Costs and benefits in perceptual
categorization. Memory & Cognition, 28:597–615, 2000.

275. D. J. Magenheimer, L. Peters, K. W. Pettis, and D. Zuras. Integer
multiplication and division on the HP precision architecture. IEEE
Transactions on Computers, 37(8):980–990, 1988.

276. E. A. Maguire, D. G. Gadian, I. S. Johnsrude, C. D. Good, J. Ash-
burner, R. S. J. Frackowiak, and C. D. Frith. Navigation-related
structural change in the hippocampi of taxi drivers. Proceedings of
the National Academy of Sciences, 97(8):4398–4403, 2000.

277. A. B. Markman and E. J. Wisniewski. Similar and different: The
differentiation of basic-level categories. Journal of Experimen-
tal Psychology: Learning, Memory and Cognition, 23(1):54–70,
1997.

278. M. Martin. Memory span as a measure of individual differences in
memory capacity. Memory & Cognition, 6(2):194–198, 1978.

279. H. Massalin. Superoptimizer – A look at the smallest program.
In Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS II),
pages 122–126. ACM Press, Oct. 1987.

280. E. Matias, I. S. MacKenzie, and W. Buxton. One-handed touch-
typing on a QWERTY keyboard. Human-Computer Interaction,
11:1–27, 1996.

v 1.1 January 30, 2008

281. A. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski. Contrast-
ing characteristics and cache performance of technical and multi-
user commercial workloads. In ASPLOS-VI: Sixth International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 145–156, Oct. 1994.

282. D. C. McClelland. Testing for competence rather than for "intelli-
gence". American Psychologist, 28:1–14, Jan. 1973.

283. M. McCloskey, A. Washburn, and L. Felch. Intuitive physics:
The straight-down belief and its origin. Journal of Experimen-
tal Psychology: Learning, Memory and Cognition, 9(4):636–649,
1983.

284. S. McConnell. Code Complete. Microsoft Press, 1993.

285. D. McFadden. Rationality for economists? Journal of Risk and
Uncertainty, 19:73–105, 1999.

286. D. C. McFarlane. Interruption of people in human-computer in-
teraction: A general unifying definition of human interruption
and taxonomy. Technical Report NRL/FR/5510-97-9870, Naval
Research Laboratory, Dec. 1997.

287. K. B. McKeithen, J. S. Reitman, H. H. Ruster, and S. C. Hirtle.
Knowledge organization and skill differences in computer pro-
grammers. Cognitive Psychology, 13:307–325, 1981.

288. L. McMahan and R. Lee. Pathlengths of SPEC benchmarks for
PA-RISC, MIPS, and SPARC. In Proceedings of IEEE Compcon,
pages 481–490, Feb. 1993.

289. J. McMillan. Enhancing college student’s critical thinking: A re-
view of studies. Research in Higher Education, 26:3–29, 1987.

290. R. E. Melchers and M. V. Harrington. Human error in simple de-
sign tasks. Technical Report Civil Engineering Research Reports
Report Number 31, Monash University, 1982.

291. R. C. Merkle. Energy limits to the computational power of the
human brain. Foresight Update, 6, Aug. 1989.

292. S. Meyers. Effective C++: 50 Specific Ways to Improve Your
Programs and Designs. Addison-Wesley professional computing
series. Addison–Wesley, Reading, MA, USA, 1992.

293. S. Meyers, C. K. Duby, and S. P. Reiss. Constraining the structure
and style of object-oriented programs. Technical Report CS-93-12,
Department of Computer Science, Brown University, Box 1910,
Providence, Rhode Island 02912, U.S.A., Apr. 1993.

294. S. Meyers and M. Lejter. Automatic detection of C++ programming
errors: Initial thoughts on a lint++. Technical Report Technical
Report CS-91-51, Brown University, 1991.

295. S. Milgram. Obedience to Authority. McGraw–Hill, 1974.

296. G. A. Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. The Psychologi-
cal Review, 63(2):81–97, 1956.

297. J. Miller, J. Daly, M. Wood, M. Roper, and A. Brooks. Statistical
power and its subcomponents – missing and misunderstood con-
cepts in empirical software engineering research. Technical Report
EFOCS-15-94, Department of Computer Science, University of
Strathclyde, Livingstone Tower, Richmond Street, Glasgow G1
1XH, UK, 1994.

298. J. Miller, M. Wood, M. Roper, and A. Brooks. Further experiences
with scenarios and checklists. Technical Report EFOCS-20-94,
University of Strathclyde, 1994.

299. MISRA. Guidelines for the Use of the C Language in Vehicle
Based Software. Motor Industry Research Association, Nuneaton
CV10 0TU, UK, 1998.

300. MISRA. MISRA-C:2004 Guidelines for the Use of the C Language
in Vehicle Based Software. Motor Industry Research Association,
Nuneaton CV10 0TU, UK, 2004.

301. MISRA. MISRA-C++:2008 Guidelines for the use of the C++
language in critical systems. Motor Industry Research Association,
Nuneaton CV10 0TU, UK, 2008.

302. S. Mithen. The Prehistory of the Mind. Thames and Hudson,
1996.

303. A. Miyake and P. Shah. Models of Working Memory: Mechanisms
of Active Maintenance and Executive Control. Cambridge Univer-
sity Press, 1999.

304. A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of
open source software development: Apache and Mozilla. Technical
Report ALR-2002-003, Avaya Labs Research, Jan. 2002.

305. A. Mockus and D. M. Weiss. Predicting risk in software changes.
Bell Labs Technical Journal, Apr.-June 2000.

306. T. Moher and G. M. Schneider. Methods for improving controlled
experimentation in software engineering. In Proceedings of the 5th

international conference on Software engineering, pages 224–233.
IEEE Computer Society, Mar. 1981.

307. P. Monaghan. A corpus-based analysis of individual differences in
proof-style. Thesis (m.s.), Centre for Cognitive Science, University
of Edinburgh, 1995.

308. P. Monaghan. Representation and Strategy in Reasoning: An Indi-
vidual Differences Approach. PhD thesis, University of Edinburgh,
2000.

309. S. Monsell. Task switching. TRENDS in Cognitive Science,
7(3):134–140, 2003.

310. J. E. Moore and L. A. Burke. How to turn around ’turnover culture’
in IT. Communications of the ACM, 45(2):73–78, 2002.

311. T. C. Mowry, A. K. Demke, and O. Krieger. Automatic compiler-
inserted I/O prefetching for out-of-core applications. In Proceed-
ings of the USENIX 2nd Symposium on Operating Systems De-
signed and Implementation, pages 3–17. USENIX Association,
Oct. 1996.

312. S. S. Muchnick. Advances Compiler Design & Implementation.
Morgan Kaufmann Publishers, 1997.

313. G. L. Murphy and D. L. Medin. The role of theories in conceptual
coherence. Psychological Review, 92(3):289–315, 1985.

314. I. B. Myers, M. H. McCaulley, N. L. Quenk, and A. L. Hammer.
A Guide to the Development and Use of the Myers-Briggs Type
Indicator. Consulting Psychologists Press, third edition, 1998.

315. C. R. Mynatt, M. E. Doherty, and W. Dragan. Information rel-
evance, working memory, and the consideration of alternatives.
Quarterly Journal of Experimental Psychology, 46A(4):759–778,
1993.

316. C. R. Mynatt, M. E. Doherty, and R. D. Tweney. Confirmation
bias in a simulated research environment. Quarterly Journal of
Experimental Psychology, 29:85–95, 1997.

317. R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keck-
ler. A design space evaluation of grid processor architectures. In
Proceedings of the 34th Annual International Symposium on Mi-
croarchitecture, pages 40–51, Dec. 2001.

318. NASA. NASA GB-1740.13-96: NASA guidebook for safety criti-
cal software - analysis and development. Technical report, NASA
Glenn Research Center, 1996.

319. G. C. Necula, S. McPeak, and W. Weimer. Taming C pointers.
www.cs.berkeley.edu/~necula, 2004.

January 30, 2008 v 1.1

www.cs.berkeley.edu/~necula

320. K. M. Nelson, H. J. Nelson, and M. Ghods. Understanding the
personal competencies of IS support experts: Moving towards the
E-business future. In 34th Annual Hawaii International Confer-
ence on System Sciences (HICSS-34)-Volume 8. IEEE, Jan. 2001.

321. A. Newell and P. S. Rosenbloom. Mechanisms of skill acquisition
and the power law of practice. In J. R. Anderson, editor, Cognitive
skills and their acquisition, pages 1–54. Erlbaum, Hillsdale, NJ,
1981.

322. D. M. Nichols and M. B. Twidale. Usability and open source
software. Technical Report Working Paper 10/02, University of
Waikato, 2002.

323. R. S. Nickerson, D. N. Perkins, and E. E. Smith. The Teaching of
Thinking. Erlbaum, Hillsdale NJ, 1985.

324. B. K. Nirmal. PROGRAMMING STANDARDS and GUIDELINES:
COBOL edition. Prentice-Hall, Inc, 1987.

325. R. E. Nisbett, D. H. Krantz, C. Jepson, and Z. Kunda. The use of
statistical heuristics in everyday inductive reasoning. Psychological
Review, 90(4):339–363, 1983.

326. R. E. Nisbett and A. Norenzayan. Culture and cognition. In
D. Medin and H. Pashler, editors, Stevens’ Handbook of Experimen-
tal Psychology, Volume Two: Memory and Cognitive Processes,
chapter 13. John Wiley & Sons, third edition, Apr. 2002.

327. R. M. Nosofsky. Exemplar-based accounts of relations between
classification, recognition and typicality. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 14(4):700–708,
1988.

328. K. Oberauer, H.-M. Süß, O. Wilhelm, and W. W. Wittmann. The
multiple faces of working memory: Storage, processing, supervi-
sion, and coordination. Intelligence, 31:167–193, 2003.

329. J. Oberlander, R. Cox, P. Monaghan, K. Stenning, and R. Tobin.
Individual differences in proof structures following multimodal
logic teaching. In Proceedings of the 18th Annual Meeting of the
Cognitive Science Society, pages 201–206, 1996.

330. M. C. Ohlsson. Utilisation of historical data for controlling and
improving software development. Licentiate, Lund Institute of
Technology, Sweden, 1999.

331. M. C. Ohlsson. Controlling Fault-Prone Components for Software
Evolution. PhD thesis, Lund Institute of Technology, Sweden,
2001.

332. D. N. Osherson, O. Wilkie, E. Shafir, E. E. Smith, and A. López.
Category-based induction. Psychological review, 97(2):185–200,
1990.

333. P. W. Paese and J. A. Sniezek. Influences on the appropriateness of
confidence in judgment: Practice, effort, information, and decision-
making. Organizational Behavior and Human Decision Processes,
48:100–130, 1991.

334. S. E. Palmer. Vision Science: Photons to Phenomenology. The
MIT Press, 1999.

335. S. Paoli. C++ coding standard specification. Technical Report
CERN-UCO/1999/207, CERN, Jan. 2000.

336. R. E. Park. Software size measurement: A framework for counting
source statements. Technical Report CMU/SEI-92-TR-20, Soft-
ware Engineering Institute, Sept. 1992.

337. H. E. Pashler. The Psychology of Attention. The MIT Press,
1999.

338. M. A. Paskin. Maximum entropy probabilistic logic. Technical
report, University of California, Berkeley, USA, 2002.

339. A. Patel. Auditors’ belief revision: Recency effects of contrary
and supporting audit evidence and source reliability. The Auditors
Report, 24(3), 2001.

340. J. W. Payne, J. R. Bettman, and E. J. Bettman. The Adaptive Deci-
sion Maker. Cambridge University Press, 1993.

341. M. J. Pazzani. Influence of prior knowledge on concept acquisition:
Experimental and computational results. Journal of Experimental
Psychology: Learning, Memory and Cognition, 17(3):416–432,
1991.

342. N. Pennington. Comprehension strategies in programming. In
G. Olson, S. Shepard, and E. Soloway, editors, Empirical Studies
of programmers: Second Workshop, chapter 7, pages 100–113.
Ablex Publishing, 1987.

343. N. Pennington. Stimulus structures and mental representations in
expert comprehension of computer programs. Cognitive Psychol-
ogy, 19:295–341, 1987.

344. D. E. Perry, N. A. Staudenmayer, and L. G. Votta Jr. People, orga-
nizations, and process improvement. IEEE Software, 11(4):36–45,
July 1994.

345. D. E. Perry, N. A. Staudenmayer, and L. G. Votta Jr. Understanding
and improving time usage in software development. In A. Fuggetta
and A. L. Wolf, editors, Trends in Software Process, chapter 5.
John Wiley & Sons, 1996.

346. D. E. Perry and C. S. Stieg. Software faults in evolving a large, real-
time system: a case study. In Proceedings of the 1993 European
Software Engineering Conference, pages 48–67, 1993.

347. S. L. Peyton Jones. The Implementation of Functional Program-
ming Languages. Prentice-Hall International, 1987.

348. S. Pinker. How the Mind Works. Penguin, 1997.
349. R. Ploetzner and K. VanLehn. The acquisition of qualitative physics

knowledge during textbook-based physics trainings. Cognition and
Instruction, 15(2):169–205, 1997.

350. T. Plum. Reliable data structures in C. Plum Hall, 1985.
351. T. Plum. C Programming guidelines. Plum Hall, 1989.
352. T. Plum and D. Saks. C++ Programming Guidelines. Plum Hall,

1991.
353. K. R. Popper. Conjectures and Refutations. Routledge, 1969.
354. A. Porter, H. Siy, and L. Votta. A review of software inspections.

In M. Zelkowitz, editor, Advances in Computers 42, pages 39–76.
Academic Press, 1996.

355. A. Porter and L. Votta. Comparing detection methods for software
requirements inspections: A replication using professional subjects.
Empirical Software Engineering, 3(4):355–379, 1998.

356. A. A. Porter, H. Siy, A. Mockus, and L. G. Votta. Understanding
the sources of variation in software inspections. Technical Report
CS-TR-3762, University of Maryland, College Park, Jan. 1997.

357. A. A. Porter, H. P. Siy, C. A. Toman, and L. G. Votta. An experi-
ment to assess the cost-benefits of code inspections in large scale
software development. IEEE Transactions on Software Engineer-
ing, 23(6):329–346, June 1997.

358. POSC. POSC Base Computer Standards: version 2. Prentice Hall,
Inc, 1994.

359. A. Postma, R. Izendoorn, and E. H. F. De Haan. Sex differences
in object location memory. Brain and Cognition, 36:334–345,
1998.

360. E. M. Pothos and N. Chater. Rational categories. In Proceedings of
the Twentieth Annual Conference of the Cognitive Science Society,
pages 848–853, 1998.

v 1.1 January 30, 2008

361. L. Prechelt. Why we need an explicit forum for negative results.
Journal of Universal Computer Science, 3(9):1074–1083, 1997.

362. L. Prechelt. The 28:1 Grant/Sackman legend is misleading, or:
How large is interpersonal variation really? Technical Report
iratr-1999-18, Universität Karlsruhe, 1999.

363. L. Prechelt. Comparing Java vs. C/C++ efficiency differences to in-
terpersonal differences. Communications of the ACM, 42(10):109–
112, Oct. 1999.

364. L. Prechelt. An empirical comparison of C, C++, Java, Perl, Python,
Rexx and Tcl for a string processing program. Technical Report
Technical Report 2000-5, Universität Karlsruhe, Fakultat für Infor-
matik, 2000.

365. L. Prechelt, G. Malpohl, and M. Phlippsen. JPlag: Finding plagia-
risms among a set of programs. Technical Report Technical Report
2000-1, Universität Karlsruhe, Fakultat für Informatik, 2000.

366. C. C. Presson and D. R. Montello. Updating after rotational and
translational body movements: coordinate structure of perspective
space. Perception, 23:1447–1455, 1994.

367. T. A. Proebsting and B. G. Zorn. Programming shorthand. Tech-
nical Report Technical Report MSR-TR-2000-03, Microsoft Re-
search, 2000.

368. J. B. Proffitt, J. D. Coley, and D. L. Medin. Expertise and category-
based induction. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 26(4):811–828, 2000.

369. S. Qualline. C Elements of Style. M&T Books, 1992.
370. M. Rabin and J. Schrag. First impressions matter: A model of

confirmation bias. Quarterly Journal of Economics, 114:37–82,
1999.

371. H. Rabinowitz and C. Schaap. Portable C. Prentice Hall, Inc,
1990.

372. D. Raffo, J. Settle, and W. Harrison. Investigating financial mea-
sures for planning software IV&V. Technical Report TR-99-05,
Portland State University, 1999.

373. J. Ranade and A. Nash. The Elements of C Programming Style.
McGraw-Hill, Inc, 1992.

374. P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso.
Performance of database workloads on shared-memory systems
with out-of-order processors. In Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASP-
LOS), 1998.

375. J. Reason. Human Error. Cambridge University Press, 1990.
376. A. S. Reber and S. M. Kassin. On the relationship between implicit

and explicit modes in the learning of a complex rule structure. Jour-
nal of Experimental Psychology: Human Learning and Memory,
6(5):492–502, 1980.

377. D. J. Reifer. Qualifying the debate: Ada vs C++. Crosstalk: The
Journal of Defense Software Engineering, 1996.

378. M. Richards and C. Whitby-Strevens. BCPL —the language and
its compiler. Cambridge University Press, 1979.

379. L. J. Rips. Inductive judgments about natural categories. Journal
of Verbal Learning and Verbal Behavior, 14:665–681, 1975.

380. L. J. Rips, E. J. Shoben, and E. E. Smith. Semantic distance and
the verification of semantic relations. Journal of Verbal Learning
and Verbal Behavior, 12:1–20, 1973.

381. D. M. Ritchie. The development of the C language. Second History
of Programming Languages conference, 1993.

382. A. D. Robison. Impact of economics on compiler optimization. In
Proceedings of the 2001 joint ACM-ISCOPE conference on Java
Grande, pages 1–10. ACM Press, 2001.

383. R. D. Rogers and S. Monsell. Costs of a predictable switch be-
tween simple cognitive tasks. Journal of Experimental Psychology:
General, 124(2):207–231, 1995.

384. R. Ronen, A. Mendelson, K. Lai, S.-L. Lu, F. Pollack, and J. P.
Shen. Coming challenges in microarchitecture and architecture.
Proceedings of the IEEE, 89(3):325–340, 2001.

385. E. Rosch, C. B. Mervis, W. D. Gray, D. M. Johnson, and P. Boyes-
Braem. Basic objects in natural categories. Cognitive Psychology,
8:382–439, 1976.

386. L. Ross, M. R. Lepper, and M. Hubbard. Perseverance in self-
perception and social perception: Biased attributional processes
in the debeliefing paradigm. Journal of Personality and Social
Psychology, 32(5):880–892, 1975.

387. D. C. Rubin and A. E. Wenzel. One hundred years of forget-
ting: A quantitative description of retention. Psychological Review,
103(4):734–760, 1996.

388. J. S. Rubinstein, D. E. Meyer, and J. E. Evans. Executive control
of cognitive processes in task switching. Journal of Experimental
Psychology: Human Perception and Performance, 27(4):763–797,
2001.

389. R. H. Saavedra and A. J. Smith. Analysis of benchmark character-
istics and benchmark performance prediction. Technical Report
USC-CS-92-524, University of California, Berkeley, Sept. 1992.

390. R. Samuels, S. Stich, and L. Faucher. Reason and rationality. In
I. Niiniluoto, M. Sintonen, and J. Wolenski, editors, Handbook of
Epistemology, pages 131–179. Dordrecht:Kluwer, 2004.

391. W. Scacchi. Understanding software productivity. In D. Hurley,
editor, Advances in Software Engineering and Knowledge Engi-
neering, volume 4, pages 37–70. World Scientific, 1995.

392. D. A. Schkade and D. N. Kleinmuntz. Information displays and
choice processes: Differential effects of organization, form, and se-
quence. Organizational Behavior and Human Decision Processes,
57:319–337, 1994.

393. W. Schneider. Training high-performance skills: Fallacies and
guidelines. Human Factors, 27(3):285–300, 1985.

394. J. W. Schoonard and S. J. Boies. Short type: A behavior analysis
of typing and text entry. Human Factors, 17(2):203–214, 1975.

395. C. D. Schunn, L. M. Reder, A. Nhouyvanisvong, D. R. Richards,
and P. J. Stroffolino. To calculate or not to calculate: A source
activation confusion model of problem familiarity’s role in strategy
selection. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 23(1):3–29, 1997.

396. P. Sedlmeier, R. Hertwig, and G. Gigerenzer. Are judgments of the
positional frequencies of letters systematically biased due to avail-
ability? Journal of Experimental Psychology: Learning, Memory,
and Cognition, 24(3):754–770, 1998.

397. T. M. Shaft and I. Vessey. The relevance of application domain
knowledge: Characterizing the computer program comprehension
process. Journal of Management Information Systems, 15(1):51–
78, 1998.

398. U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting
format string vulnerabilities with type qualifiers. In 10th USENIX
Security Symposium, Aug. 2001.

399. B. A. Sheil. The psychological study of programming. ACM Com-
puting Surveys, 13(1):101–120, Mar. 1981.

400. R. N. Shepard, C. I. Hovland, and H. M. Jenkins. Learning and
memorization of classifications. Psychological Monographs: Gen-
eral and Applied, 75(15):1–39, 1961.

January 30, 2008 v 1.1

401. R. N. Shepard and J. Metzler. Mental rotation of three-dimensional
objects. Science, 171:701–703, Feb. 1971.

402. T. Sherwood and B. Calder. Time varying behavior of programs.
Technical Report CS99-630, University of California, San Diego,
Aug. 1999.

403. R. J. Shiller. Irrational Exuberance. Princeton University Press,
2000.

404. B. Shneiderman. Software Psychology: Human Factors in Com-
puter and Information Systems. Winthrop Publishers, Inc, 1980.

405. S. M. Shugan. The cost of thinking. Journal of Consumer Research,
7:99–111, Sept. 1980.

406. A. Sides, D. Osherson, N. Bonini, and R. Viale. On the reality
of the conjunction fallacy. Memory & Cognition, 30(2):191–198,
2002.

407. J. G. Siek, J. M. Squyres, and A. Lumsdaine. The laboratory for
scientific computing (LSC): Coding standards. Technical report,
University of Notre Dame, Apr. 2000.

408. S. Silberman. The geek syndrome. Wired, 9(12), Dec. 2001.

409. Silicon Graphics. C Language Reference Manual. Silicon Graphics,
Inc, 007-0701-130 edition, 1999.

410. S. E. Sim, C. L. A. Clarke, and R. C. Holt. Archetypal source
code searches: A survey of software developers and maintainers.
In Proceedings of the Sixth International Workshop on Program
Comprehension, pages 180–187, June 1998.

411. S. E. Sim and R. C. Holt. The ramp-up problem in software
projects: A case study of how software immigrants naturalize.
In Proceedings of the Twentieth International Conference on Soft-
ware Engineering, pages 361–370, Apr. 1998.

412. H. A. Simon. Models of Bounded Rationality: Behavioral Eco-
nomics and Business Organization. The MIT Press, 1982.

413. I. Simonson. Choice based on reasons: The case of attraction and
compromise effects. Journal of Consumer Research, 16:158–173,
Sept. 1989.

414. I. Simonson and A. Tversky. Choice in context: Tradeoff con-
trast and extremeness aversion. Journal of Marketing Research,
29:281–295, 1992.

415. D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen,
E. Karahasanovic, E. F. Koren, and M. Vokác. Conducting real-
istic experiments in software engineering. In Proceedings of the
2002 International Symposium on Empirical Software Engineering
(ISESE’02), pages 17–26, Oct. 2002.

416. D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes,
A. Karahasanović, N.-K. Liborg, and A. C. Rekdal. A survey of
controlled experiments in software engineering. Technical Report
2004-4, SIMULA Research Laboratory, 2004.

417. V. Skirbekk. Age and individual productivity: A literature sur-
vey. Technical Report MPIDR Working Paper WP 2003-028, Max
Plank Institute for Demographic Research, Aug. 2003.

418. N. J. Slamecka and P. Graf. The generation effect: Delineation
of a phenomenon. Journal of Experimental Psychology: Human
Learning and Memory, 4(6):592–604, 1978.

419. N. T. Slingerland and A. J. Smith. Measuring the performance of
multimedia instruction sets. Technical Report UCB/CSD-00-1125,
University of California Berkeley, USA, Dec. 2000.

420. M. D. Smith, M. Johnson, and M. A. Horowitz. Limits on multiple
issue. In Proceedings of the Third International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 290–302, 1989.

421. S. Sonnentag. Excellent software professionals: experience, work
activities, and perception by peers. Behaviour & Information Tech-
nology, 14(5):289–299, 1995.

422. F. Spadini, M. Fertig, and S. J. Patel. Characterization of repeating
dynamic code fragments. Technical Report CRHC-02-09, Univer-
sity of Illinois at Urbana-Champaign, 2002.

423. A. Spector and I. Biederman. Mental set and shift revisited. Ameri-
can Journal of Psychology, 89:669–679, 1976.

424. D. Sperber and D. Wilson. Relevance: Communication and Cogni-
tion. Blackwell Publishers, second edition, 1995.

425. D. Spuler. C++ and C debugging, testing and reliability. Prentice
Hall, Inc, 1994.

426. R. M. Stallman. Using te GNU Compiler Collection. Free Software
Foundation, Mar. 2004.

427. D. Stamovlasis and G. Tsaparlis. Non-linear analysis of the ef-
fect of working-memory capacity on organic-synthesis problem
solving. Chemistry Education: Research and Practice in Europe,
1(3):375–380, 2000.

428. L. Standing, J. Conezio, and R. N. Haber. Perception and memory
for pictures: Single-trial learning of 2500 visual stimuli. Psycho-
nomic Science, 19(2):73–74, 1970.

429. Standish Group. The chaos report. Technical report, The Standish
Group, 1995.

430. S. Sternberg. Memory-scanning: Mental processes revealed by
reaction-time experiments. American Scientist, 57(4):421–457,
1969.

431. A. Stevens and P. Coupe. Distortions in judged spatial relations.
Cognitive Psychology, 10:422–437, 1978.

432. T. R. Stewart and C. M. Lusk. Seven components of judgmental
forecasting skill: Implications for research and improving forecasts.
Journal of Forecasting, 13:579–599, 1994.

433. D. Straker. C-Style standards and guidelines. Prentice Hall, Inc,
1992.

434. M. Strathern. ’Improving ratings’: audit in the British university
system. European Review, 5(3):305–321, 1997.

435. B. Stroustrup. The Design and Evolution of C++. Addison–Wesley,
1999.

436. K. Sullivan, P. Chalasani, and S. Jha. Software design decisions as
real options. Technical Report Technical Report 97-14, University
of Virginia, June SULLIV 1.PDF.

437. H.-M. Süß, K. Oberauer, W. W. Wittmann, O. Wilhelm, and
R. Schulze. Working memory capacity and intelligence: An inte-
grative approach based on brunswik symmetry. Technical report,
Universität Mannheim, 1996.

438. H. Sutter and A. Alexandrescu. C++ Coding Standards: Rules,
Guidelines, and Best Practices. Addison Wesley, 2004.

439. E. B. Swanson. IS "maintainability":Should it reduce the mainte-
nance effort. The DATA BASE for Advances in Information Systems,
30(1):65–76, 1999.

440. H. L. Swanson. What develops in working memory? A life span
perspective. Developmental Psychology, 35(4):986–1000, 1999.

441. J. Sweller, J. F. Mawer, and M. R. Ward. Development of exper-
tise in mathematical problem solving. Journal of Experimental
Psychology: General, 112(4):639–661, 1983.

442. J. W. Tanaka and M. Taylor. Object categories and expertise: Is
the basic level in the eye of the beholder. Cognitive Psychology,
23:457–482, 1991.

v 1.1 January 30, 2008

443. S. E. Taylor and J. D. Brown. Illusion and well-being: A social
psychological perspective on mental health. Psychological Bulletin,
103(2):193–210, 1988.

444. B. E. Teasley, L. M. Leventhal, C. R. Mynatt, and D. S. Rohlman.
Why software testing is sometimes ineffective: Two applied studies
of positive test strategy. Journal of Applied Psychology, 79(1):142–
155, 1994.

445. D. Tennenhouse. It’s time to get physical. In 20th IEEE Real-Time
Systems Symposium (RTSS’99), Dec. 1999.

446. K. Tentori, D. Osherson, L. Hasher, and C. May. Wisdom and
ageing: Irrational preferences in college students but not older
adults. Cognition, 81(3):B87–B99, 2001.

447. P. E. Tetlock. Accountability: The neglected social context of judg-
ment and choice. Research in Organizational Behavior, 7:297–332,
1985.

448. P. E. Tetlock. An alternative metaphor in the study of judgment and
choice: People as politicians. Theory and Psychology, 1(4):451–
475, 1991.

449. P. E. Tetlock, O. V. Kristel, S. B. Elson, M. C. Green, and J. S.
Lerner. The psychology of the unthinkable: Taboo trade-offs, for-
bidden base rates, and heretical counterfactuals. Journal of Person-
ality and Social Psychology, 78:853–870, 2000.

450. Texas Instruments. TMS320C6000 CPU and Instruction Set Refer-
ence Guide. Texas Instruments, spru189f edition, Oct. 2000.

451. Texas Instruments. TMS320C6000 Programmer’s Guide. Texas
Instruments, Inc, spru196d edition, Mar. 2000.

452. T. A. Thayer, M. Lipow, and E. C. Nelson. Software Reliability.
North-Holland Publishing Company, 1978.

453. P. Thompson. Margaret Thatcher: a new illusion. Perception,
9:483–484, 1980.

454. M. Thorup. All structured programs have small tree-width
and good register allocation. Information and Computation,
142(2):159–181, 1998.

455. H. Tomiyama and H. Yasuura. Optimal code placement of embed-
ded software for instruction caches. In European Design and Test
Conference (ED&TC ’96), pages 96–101. IEEE, Mar. 1996.

456. J. Torrellas, C. Xia, and R. L. Daigle. Optimizing the instruction
cache performance of the operating system. IEEE Transactions on
Computers, 47(12):1363–1381, 1998.

457. C.-W. Tseng. Software support for improving locality in advanced
scientific codes. Technical Report CS-TR-4168, University of
Maryland, 2000.

458. R. M. Tubbs, W. F. Messier Jr., and W. R. Knechel. Recency effects
in the auditor’s belief revision process. The Accounting Review,
65(2):452–460, Apr. 1990.

459. J. Turley. Embedded processors. www.extremetech.com, Jan.
2002.

460. R. T. Turley and J. M. Bieman. Competencies of exceptional and
nonexceptional software engineers. The Journal of Systems and
Software, 28(1):19–38, Jan. 1995.

461. A. Tversky. Elimination by aspects: A theory of choice. Psycho-
logical Review, 79(4):281–299, 1972.

462. A. Tversky and D. Kahneman. Availability: A heuristic for judging
frequency and probability. In D. Kahneman, P. Slovic, and A. Tver-
sky, editors, Judgment under uncertainty: Heuristics and biases,
chapter 11, pages 163–178. Cambridge University Press, 1982.

463. A. Tversky and D. Kahneman. Judgment under uncertainty: Heuris-
tics and biases. In D. Kahneman, P. Slovic, and A. Tversky, editors,

Judgment under uncertainty: Heuristics and biases, chapter 1,
pages 3–20. Cambridge University Press, 1982.

464. A. Tversky and D. Kahneman. Judgments of and by representative-
ness. In D. Kahneman, P. Slovic, and A. Tversky, editors, Judgment
under uncertainty: Heuristics and biases, chapter 6, pages 84–98.
Cambridge University Press, 1982.

465. A. Tversky, S. Sattath, and P. Slovic. Contingent weighting in
judgment and choice. In D. Kahneman and A. Tversky, editors,
Choices, Values, and Frames, chapter 28, pages 503–517. Cam-
bridge University Press, 1999.

466. A. Tversky and I. Simonson. Context-dependent preferences. In
D. Kahneman and A. Tversky, editors, Choices, Values, and
Frames, chapter 29, pages 518–527. Cambridge University Press,
1999.

467. R. D. Tweney, M. E. Doherty, W. J. Worner, D. P. Pliske, C. R.
Mynatt, K. A. Gross, and D. L. Arkkelin. Strategies of rule dis-
covery in an inference task. Quarterly Journal of Experimental
Psychology, 32:109–123, 1980.

468. U.S. DoD. Memorandum on the use of the Ada programming
language. Technical report, U.S. Department of Defence, Apr.
1997.

469. V. Z̆ivojnović, J. M. Velarde, C. Schläger, and H. Meyr. DSP-
STONE: A DSP-oriented benchmarking methodology. In Proceed-
ings of the International Conference on Signal Processing and
Technology (ICSPAT’94), 1994.

470. T. van Gelder. Penicillin for the mind? Reason, education and
cognitive science. Technical Report Preprint No. 1/98, University
of Melbourne Department of Philosophy, 1998.

471. T. van Gelder and A. Bulka. Reason!: Improving informal reason-
ing skills. In Proceedings of the Australian Computers in Education
Conference, 2000.

472. C. Van Rooy, C. Stough, A. Pipingas, C. Hocking, and R. B.
Silberstein. Spatial working memory and intelligence Biological
correlates. Intelligence, 29:275–292, 2001.

473. A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. A. Koster,
M. Sintzoff, C. H. Lindsey, L. G. L. T. Meertens, and R. G. Fisker.
Algol 68. Springer–Verlag, 1976.

474. S. P. VanderWiel and D. J. Lilja. Data prefetch mechanisms. ACM
Computing Surveys, 32(2):174–199, 2000.

475. H. VanLehn. Mind Bugs: The Origins of Procedural Misconcep-
tions. The MIT Press, 1990.

476. F. J. Varela, E. Thompson, and E. Rosch. The Embodied Mind:
Cognitive Science and Human Experience. The MIT Press,
1999.

477. K. L. Verco and M. J. Wise. Software for detecting suspected pla-
giarism: Comparing structure and attribute-counting systems. In
Proceedings of First Australian Conference on Computer Science
Education, 1996.

478. P. Verghese and D. G. Pelli. The information capacity of visual
attention. Vision Research, 32(5):983–995, 1992.

479. P. Verhaeghen and J. Cerella. Ageing, executive control, and atten-
tion: a review of meta-analyses. Neuroscience and Biobehavioral
Reviews, 26(7):849–857, 2002.

480. P. Vickers. CAITLIN: Implementation of a Musical Program Au-
ralisation System to Study the Effects of Debugging Tasks as Per-
formed by Novice Pascal Programmers. PhD thesis, Loughborough
University, 1999.

481. G. Visaggio. Value-based decision model for renewal processes
in software maintenance. Technical Report ISERN-99-06, Depart-
ment of Informatics, University of Bari, Italy, 1999.

January 30, 2008 v 1.1

www.extremetech.com

482. J. Voas, L. Morell, and K. Miller. Using dynamic sensitivity analy-
sis to assess testability. www.cigital.com, 1991.

483. A. von Mayrhauser and A. M. Vans. From program comprehension
to tool requirements in an industrial environment. In Proceedings
Second Workshop on Program Comprehension, pages 78–86, July
1993.

484. A. von Mayrhauser, A. M. Vans, and S. Lang. Program compre-
hension and enhancement of software. In Proceedings IFIP World
Computing Congress - Information Technology and Knowledge
Engineering, 1998.

485. L. Wall, T. Christiansen, and J. Orwant. Programming Perl.
O’Reilly & Associates, Inc, 3rd edition, 2000.

486. S. R. Walli. The myth of application source-code conformance.
Standard View, 4(2):94–99, June 1996.

487. P. C. Wason. On the failure to eliminate hypothesis in a conceptual
task. Quarterly Journal of Experimental Psychology, XII:129–140,
1960.

488. Watcom. Watcom C Language Reference. Sybase, Inc, 11.0c edi-
tion, 2000.

489. T. White House. Guidelines and discount rates for benefit-cost anal-
ysis of federal programs. Technical Report OMB Circular A-94,
US Government, 1992.

490. W. A. Wickelgren. Size of rehearsal group and short-term memory.
Journal of Experimental Psychology, 68(4):413–419, 1964.

491. E. Wiles. Economic models of software reuse: A survey, compari-
son and partial validation. Technical Report UWA-DCS-99-032,
Department of Computer Science, University of Wales, Aberyst-
wyth, 1999.

492. J. Wiley. Expertise as mental set: The effects of domain knowledge
in creative problem solving. Memory & Cognition, 26(4):716–730,
1998.

493. T. C. Willoughby. Are programmers paranoid? In Proceedings of
the Tenth Annual SIGCPR Conference, pages 47–54, June 1972.

494. T. D. Wilson, S. Lindsey, and T. Y. Schooler. A model of dual
attitudes. Psychological Review, 107(1):101–126, 2000.

495. J. C. Wise, D. L. Hannaman, P. Kozumplik, E. Franke, and B. L.
Leaver. Methods to improve cultural communication skills in spe-
cial operations forces. Technical Report ARI Contract Report 98-

06, United States Army Research Institute for the Behavioral and
Social Sciences, July 1998.

496. J. Withey. Investment analysis of software assets for product lines.
Technical Report CMU/SEI-96-TR-010, Software Engineering
Institute, Carnegie Mellon University, Nov. 1996.

497. WL | Delft Hydraulics. Programmer’s guide C programming rules.
Technical Report OMS report number 2001-02, WL | Delft Hy-
draulics, Nov. 2001.

498. M. Wolfe. How compilers and tools differ for embedded systems.
In Proceedings of the 2005 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, CASES 2005,
pages 1–4. ACM, Sept. 2005.

499. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological con-
siderations. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 24–37, New York,
June 22–24 1995. ACM Press.

500. M. Yang, G.-R. Uh, and D. B. Whalley. Efficient and effective
branch reordering using profile data. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 24(6):667–697,
2002.

501. J. J. Yi and D. J. Lilja. Improving processor performance by sim-
plifying and bypassing trivial computations. In International Con-
ference on Computer Design (ICCD’02), pages 462–467, Sept.
2002.

502. W. D. Yu. A software fault prevention approach in coding and root
cause analysis. Bell Labs Technical Journal, Apr.-June 1998.

503. R. Yung. Evaluation of a commercial microprocessor. Technical
Report SMLI TR-98-65, Sun Microsystems, 1998.

504. S. F. Zeigler. Comparing development costs of C and Ada. Techni-
cal report, Rational Software Corporation, Mar. 1995.

505. M. V. Zelkowitz and D. Wallace. Experimental models for vali-
dating computer technology. IEEE Computer, 31(5):23–31, May
1998.

506. J. Zobel. Reliable research: Towards experimental standards for
computer science. In Proceedings of the 21st Australian Computer
Science Conference, pages 217–229, Feb. 1998.

v 1.1 January 30, 2008

www.cigital.com

