Obtained using the following options:

./numbers -print nom+ -wild "*.[cfh]" -usage file+ -ignore comm+ /home/maths/R-2.13.0.tar.gz

/home/maths/R-2.13.0.tar.gz
R-2.13.0/src/appl/cpoly.c
  625 0.005
R-2.13.0/src/appl/integrate.c
 1608 .417959183673469387755102040816327   Gauss-Kronrod quadrature weights for 7 points
 1612 ........42335976907279  0.864864864864864864865   32/(32+5)
 1625 .209482141084727828012999174891714   Gauss-Kronrod quadrature coefficients for 15 points
 2033 ....713443086881375936e-2  6.66666666666666666667e-2   1/15
 2037 .295524224714752870173892994651338   Gauss-Kronrod quadrature weights for 10 points
 2047 .14887433898163121088482600112972   Gauss-Kronrod-Patterson quadrature coefficients for 10 points (Numerical recipes in C)
 2058 .149445554002916905664936468389821   Gauss-Kronrod-Patterson quadrature coefficients for 21 points
 2058 .149445554002916905664936468389821   Gauss-Kronrod quadrature coefficients for 21 points
 2137 1981.
R-2.13.0/src/appl/lbfgsb.c
  300 1208.
  305 1994.
  314 1994.
  314 1997.
  536 1208.
  541 1994.
  554 1994.
  554 1997.
 1094 1994.
 1094 1996.
 1222 1994.
 1222 1996.
 1463 1208.
 1467 1994.
 1474 1994.
 1474 1997.
 1824 1994.
 1824 1996.
 1907 1994.
 1907 1997.
 2061 1208.
 2066 1994.
 2073 1994.
 2073 1997.
 2334 1994.
 2334 1996.
 2426 1994.
 2426 1996.
 2533 1994.
 2533 1996.
 2634 1994.
 2634 1996.
 2770 1994.
 2770 1996.
 2868 1994.
 2868 1997.
 3040 1208.
 3046 1994.
 3046 1996.
 3307 1983.
 3311 1993.
 3580 1993.
 3858 1991.
R-2.13.0/src/appl/machar.c
   18 1980.
R-2.13.0/src/appl/uncmin.c
 2025 1000.
R-2.13.0/src/extra/blas/blas.f
  311 1986.
  614 1989.
  898 1986.
 1136 1986.
 1236 1982.
 1486 ........  4.096e+3   2^12
 1486 ............  1.6777216e+7   2^24
 1486 ........5e-8  5.9604644775390625e-8   2^-24
 1757 1986.
 2146 1986.
 2395 1986.
 2604 1986.
 2930 1989.
 3189 1986.
 3437 1986.
 3645 1986.
 3916 1989.
 4224 1989.
 4536 1986.
 4882 1986.
 5184 1986.
 5486 1986.
 5815 1989.
 6143 1986.
 6459 1989.
 6810 1986.
R-2.13.0/src/extra/blas/cmplxblas.f
   57 1982.
  418 1986.
  674 1986.
  854 1986.
 1118 1986.
 1408 1989.
 1831 1989.
 2196 1986.
 2546 1989.
 2934 1986.
 3324 1986.
 3594 1986.
 3805 1986.
 4118 1989.
 4374 1986.
 4617 1989.
 4925 1986.
 5183 1986.
 5411 1986.
 5722 1989.
 6017 1989.
 6324 1989.
 6637 1986.
 7018 1986.
 7355 1986.
 7696 1986.
 8068 1989.
R-2.13.0/src/extra/bzip2/bzcompress.c
  306 100.0
R-2.13.0/src/extra/bzip2/bzlib.c
   51 2007.
R-2.13.0/src/extra/graphapp/fonts.c
  124 436435.
R-2.13.0/src/extra/graphapp/graphapp.h
    5 1998.
   35 ............9  3.14159265358979323846   pi
R-2.13.0/src/extra/graphapp/metafile.c
   87 25.40
   89 25.40
R-2.13.0/src/extra/intl/explodename.c
    2 1995.
R-2.13.0/src/extra/intl/finddomain.c
    3 1995.
R-2.13.0/src/extra/intl/gettextP.h
    3 1995.
R-2.13.0/src/extra/intl/intl-exports.c
    3 2006.
R-2.13.0/src/extra/intl/l10nflist.c
    2 1995.
R-2.13.0/src/extra/intl/loadinfo.h
    3 1996.
R-2.13.0/src/extra/intl/lock.h
   19 2005.
R-2.13.0/src/extra/intl/plural-exp.c
    3 2000.
R-2.13.0/src/extra/intl/plural-exp.h
    3 2000.
R-2.13.0/src/extra/intl/plural.c
   77 2000.
  384 ........  4.096e+3   2^12
R-2.13.0/src/extra/intl/printf.c
    3 2003.
R-2.13.0/src/extra/intl/tsearch.c
    2 1997.
  373 250.000
R-2.13.0/src/extra/intl/vasnprintf.c
  760 0.03345
 1011 2.322
 1014 2.322
 1285 .....................4  0.707106781186547524401   2^(-1/2)
 1285 0.70710678118654752444   sin(pi/2^2)/cos(pi/2^2)
 1287 .....................  1.4142135623730950488   2^(1/2)
 1292 .....................  1.18920711500272106672   2^(1/4)
 1297 .....................  1.09050773266525765921   2^(1/8)
 1298 .....  0.125   2^-3
 1302 .....................  1.04427378242741384032   2^(1/16)
 1303 .......  6.25e-2   2^-4
 1312 .....................3  0.301029995663981195214   log(2)
 1376 .....................4  0.707106781186547524401   2^(-1/2)
 1376 0.70710678118654752444   sin(pi/2^2)/cos(pi/2^2)
 1378 .....................  1.4142135623730950488   2^(1/2)
 1383 .....................  1.18920711500272106672   2^(1/4)
 1388 .....................  1.09050773266525765921   2^(1/8)
 1389 .....  0.125   2^-3
 1393 .....................  1.04427378242741384032   2^(1/16)
 1394 .......  6.25e-2   2^-4
 1403 .....................3  0.301029995663981195214   log(2)
 2133 0.831
 2139 0.831
 2230 0.831
 2252 .......  6.25e-2   2^-4
 2381 0.831
 2403 .......  6.25e-2   2^-4
 3672 ......3  0.301029995663981195214   log(2)
 3680 ......3  0.301029995663981195214   log(2)
 3686 ......3  0.301029995663981195214   log(2)
 3702 .......4  0.333333333333333333333   9^(-1/2)
 3710 .......4  0.333333333333333333333   9^(-1/2)
 3716 .......4  0.333333333333333333333   9^(-1/2)
 3757 ......3  0.301029995663981195214   log(2)
 3765 ......3  0.301029995663981195214   log(2)
 3783 0.831
 3789 0.831
R-2.13.0/src/extra/trio/trio.c
    5 1.112
  898 1.112
 1308 ...................5  3.32192809488736234787   1/log(2) or log2(10)
R-2.13.0/src/extra/trio/trionan.c
  247 7.949928895127363e-275
R-2.13.0/src/extra/tzone/localtime.c
  139 1003.1
R-2.13.0/src/extra/win_iconv/win_iconv.c
 1182 20127.
R-2.13.0/src/extra/xz/api/lzma/check.h
   37 802.3
  108 802.3
R-2.13.0/src/extra/zlib/trees.c
   25 1988.
   29 1983.
R-2.13.0/src/extra/zlib/zlib.h
   58 1951.
 1127 4095.
R-2.13.0/src/gnuwin32/bitmap/rbitmap.c
  204 .......  2.54e-2   meters in an inch
  204 .......  2.54e-2   meters in an inch
  555 .......  2.54e-2   meters in an inch
R-2.13.0/src/gnuwin32/extra.c
  723 ...........  1.048576e+6   2^20
  740 ...........  1.048576e+6   2^20
  775 040904e4
  780 040904e4
  785 040904e4
R-2.13.0/src/gnuwin32/malloc.c
  354 ........  4.096e+3   2^12
 1380 ...........  1.048576e+6   2^20
 1380 ...........  1.048576e+6   2^20
R-2.13.0/src/gnuwin32/sys-win32.c
  142 ..............  4.294967296e+9   2^32
  143 100.0
  145 ..............  4.294967296e+9   2^32
  146 100.0
  149 100.0
  156 100.0
R-2.13.0/src/gnuwin32/system.c
 1002 ........  1.024e+3   2^10
 1002 ........  1.024e+3   2^10
 1006 ........  1.024e+3   2^10
 1006 ........  1.024e+3   2^10
 1007 ........  1.024e+3   2^10
 1007 ........  1.024e+3   2^10
R-2.13.0/src/include/Defn.h
  205 ...........  1.048576e+6   2^20
  206 ..............  1.073741824e+9   2^30
  259 ........  1.024e+3   2^10
  260 4192.
R-2.13.0/src/include/R_ext/Constants.h
   26 ......................  3.14159265358979323846   pi
R-2.13.0/src/include/R_ext/GraphicsEngine.h
  478 ....................|..  1.74532925199432957692e-2   Radians in a degree
R-2.13.0/src/library/grDevices/src/devNull.c
  195 0.4900
  196 0.3333
R-2.13.0/src/library/grDevices/src/devPicTeX.c
   40 ........  7.227e+1   Points (Anglo-American) in a inch
   69 0.5416690
   69 0.7777810
   69 0.6111145
   69 .......9  0.666666666666666666667   32/(32+16)
   69 0.7083380
   69 0.7222240
   70 0.7777810
   70 0.7222240
   70 0.7777810
   70 0.7222240
   70 0.5361130
   70 0.5361130
   71 0.8138910
   71 0.8138910
   71 0.2388900
   71 0.2666680
   71 0.5000020
   71 0.5000020
   71 0.5000020
   72 0.5000020
   72 0.5000020
   72 ......7  0.666666666666666666667   32/(32+16)
   72 0.4444460
   72 0.4805580
   72 0.7222240
   72 0.7777810
   73 0.5000020
   73 0.8611145
   73 0.9722260
   73 0.7777810
   73 0.2388900
   73 0.3194460
   73 0.5000020
   74 0.5000020
   74 0.7583360
   74 0.2777790
   74 0.3888900
   74 0.3888900
   75 0.5000020
   75 0.7777810
   75 0.2777790
   75 .......4  0.333333333333333333333   9^(-1/2)
   75 0.2777790
   75 0.5000020
   75 0.5000020
   76 0.5000020
   76 0.5000020
   76 0.5000020
   76 0.5000020
   76 0.5000020
   76 0.5000020
   76 0.5000020
   77 0.5000020
   77 0.5000020
   77 0.2777790
   77 0.2777790
   77 0.3194460
   77 0.7777810
   77 0.4722240
   78 0.4722240
   78 .......9  0.666666666666666666667   32/(32+16)
   78 ......7  0.666666666666666666667   32/(32+16)
   78 ......7  0.666666666666666666667   32/(32+16)
   78 0.6388910
   78 0.7222260
   78 0.5972240
   79 .......9  0.666666666666666666667   32/(32+16)
   79 0.7083380
   79 0.2777810
   79 0.4722240
   79 0.6944480
   79 0.5416690
   80 0.8750050
   80 0.7083380
   80 0.7361130
   80 0.6388910
   80 0.7361130
   80 0.6458360
   80 0.5555570
   81 0.6875050
   81 ......7  0.666666666666666666667   32/(32+16)
   81 0.9444480
   81 ......7  0.666666666666666666667   32/(32+16)
   81 ......7  0.666666666666666666667   32/(32+16)
   81 0.6111130
   82 0.2888900
   82 0.5000020
   82 0.2888900
   82 0.5000020
   82 0.2777790
   82 0.2777790
   82 0.4805570
   83 0.5166680
   83 0.4444460
   83 0.5166680
   83 0.4444460
   83 0.3055570
   83 0.5000020
   83 0.5166680
   84 0.2388900
   84 0.2666680
   84 0.4888920
   84 0.2388900
   84 .....447  0.7945071927794792   Kolakoski Constant
   84 0.5166680
   84 0.5000020
   85 0.5166680
   85 0.5166680
   85 0.3416690
   85 0.3833340
   85 0.3611120
   85 0.5166680
   85 0.4611130
   86 0.6833360
   86 0.4611130
   86 0.4611130
   86 0.4347230
   86 0.5000020
   86 0.5000020
   87 0.5000020
   87 0.5000020
   90 0.5805590
   90 0.9166720
   90 0.8555600
   90 0.6722260
   90 0.7333370
   90 .....449  0.7945071927794792   Kolakoski Constant
   90 .....449  0.7945071927794792   Kolakoski Constant
   91 0.8555600
   91 .....449  0.7945071927794792   Kolakoski Constant
   91 0.8555600
   91 .....449  0.7945071927794792   Kolakoski Constant
   91 0.6416700
   91 0.5861150
   91 0.5861150
   92 0.8916720
   92 0.8916720
   92 0.2555570
   92 0.2861130
   92 0.5500030
   92 0.5500030
   92 0.5500030
   93 0.5500030
   93 0.5500030
   93 0.7333370
   93 0.4888920
   93 0.5652800
   93 .....449  0.7945071927794792   Kolakoski Constant
   93 0.8555600
   94 0.5500030
   94 0.9472275
   94 1.0694500
   94 0.8555600
   94 0.2555570
   94 0.3666690
   94 0.5583360
   95 0.9166720
   95 0.5500030
   95 1.0291190
   95 0.8305610
   95 0.3055570
   95 0.4277800
   95 0.4277800
   96 0.5500030
   96 0.8555600
   96 0.3055570
   96 0.3666690
   96 0.3055570
   96 0.5500030
   96 0.5500030
   97 0.5500030
   97 0.5500030
   97 0.5500030
   97 0.5500030
   97 0.5500030
   97 0.5500030
   97 0.5500030
   98 0.5500030
   98 0.5500030
   98 0.3055570
   98 0.3055570
   98 0.3666690
   98 0.8555600
   98 0.5194470
   99 0.5194470
   99 0.7333370
   99 0.7333370
   99 0.7333370
   99 0.7027820
   99 .....449  0.7945071927794792   Kolakoski Constant
   99 0.6416700
  100 0.6111145
  100 0.7333370
  100 .....449  0.7945071927794792   Kolakoski Constant
  100 0.3305570
  100 0.5194470
  100 0.7638930
  100 0.5805590
  101 0.9777830
  101 .....449  0.7945071927794792   Kolakoski Constant
  101 .....449  0.7945071927794792   Kolakoski Constant
  101 0.7027820
  101 .....449  0.7945071927794792   Kolakoski Constant
  101 0.7027820
  101 0.6111145
  102 0.7333370
  102 0.7638930
  102 0.7333370
  102 1.0388950
  102 0.7333370
  102 0.7333370
  102 0.6722260
  103 0.3430580
  103 0.5583360
  103 0.3430580
  103 0.5500030
  103 0.3055570
  103 0.3055570
  103 0.5250030
  104 0.5611140
  104 0.4888920
  104 0.5611140
  104 0.5111140
  104 0.3361130
  104 0.5500030
  104 0.5611140
  105 0.2555570
  105 0.2861130
  105 0.5305590
  105 0.2555570
  105 0.8666720
  105 0.5611140
  105 0.5500030
  106 0.5611140
  106 0.5611140
  106 0.3722250
  106 0.4216690
  106 0.4041690
  106 0.5611140
  106 0.5000030
  107 0.7444490
  107 0.5000030
  107 0.5000030
  107 0.4763920
  107 0.5500030
  107 1.1000060
  107 0.5500030
  108 0.5500030
  108 0.550003
  110 0.5416690
  110 0.7777810
  110 0.6111145
  110 .......9  0.666666666666666666667   32/(32+16)
  110 0.7083380
  110 0.7222240
  111 0.7777810
  111 0.7222240
  111 0.7777810
  111 0.7222240
  111 0.5361130
  111 0.5361130
  112 0.8138910
  112 0.8138910
  112 0.2388900
  112 0.2666680
  112 0.5000020
  112 0.5000020
  112 0.5000020
  113 0.5000020
  113 0.5000020
  113 0.7375210
  113 0.4444460
  113 0.4805580
  113 0.7222240
  113 0.7777810
  114 0.5000020
  114 0.8611145
  114 0.9722260
  114 0.7777810
  114 0.2388900
  114 0.3194460
  114 0.5000020
  115 0.5000020
  115 0.7583360
  115 0.2777790
  115 0.3888900
  115 0.3888900
  116 0.5000020
  116 0.7777810
  116 0.2777790
  116 .......4  0.333333333333333333333   9^(-1/2)
  116 0.2777790
  116 0.5000020
  116 0.5000020
  117 0.5000020
  117 0.5000020
  117 0.5000020
  117 0.5000020
  117 0.5000020
  117 0.5000020
  117 0.5000020
  118 0.5000020
  118 0.5000020
  118 0.2777790
  118 0.2777790
  118 0.3194460
  118 0.7777810
  118 0.4722240
  119 0.4722240
  119 .......9  0.666666666666666666667   32/(32+16)
  119 ......7  0.666666666666666666667   32/(32+16)
  119 ......7  0.666666666666666666667   32/(32+16)
  119 0.6388910
  119 0.7222260
  119 0.5972240
  120 .......9  0.666666666666666666667   32/(32+16)
  120 0.7083380
  120 0.2777810
  120 0.4722240
  120 0.6944480
  120 0.5416690
  121 0.8750050
  121 0.7083380
  121 0.7361130
  121 0.6388910
  121 0.7361130
  121 0.6458360
  121 0.5555570
  122 0.6875050
  122 ......7  0.666666666666666666667   32/(32+16)
  122 0.9444480
  122 ......7  0.666666666666666666667   32/(32+16)
  122 ......7  0.666666666666666666667   32/(32+16)
  122 0.6111130
  123 0.2888900
  123 0.5000020
  123 0.2888900
  123 0.5000020
  123 0.2777790
  123 0.2777790
  123 0.4805570
  124 0.5166680
  124 0.4444460
  124 0.5166680
  124 0.4444460
  124 0.3055570
  124 0.5000020
  124 0.5166680
  125 0.2388900
  125 0.2666680
  125 0.4888920
  125 0.2388900
  125 .....447  0.7945071927794792   Kolakoski Constant
  125 0.5166680
  125 0.5000020
  126 0.5166680
  126 0.5166680
  126 0.3416690
  126 0.3833340
  126 0.3611120
  126 0.5166680
  126 0.4611130
  127 0.6833360
  127 0.4611130
  127 0.4611130
  127 0.4347230
  127 0.5000020
  127 0.5000020
  128 0.5000020
  128 0.5000020
  130 0.5805590
  130 0.9166720
  130 0.8555600
  130 0.6722260
  130 0.7333370
  130 .....449  0.7945071927794792   Kolakoski Constant
  130 .....449  0.7945071927794792   Kolakoski Constant
  131 0.8555600
  131 .....449  0.7945071927794792   Kolakoski Constant
  131 0.8555600
  131 .....449  0.7945071927794792   Kolakoski Constant
  131 0.6416700
  131 0.5861150
  131 0.5861150
  132 0.8916720
  132 0.8916720
  132 0.2555570
  132 0.2861130
  132 0.5500030
  132 0.5500030
  132 0.5500030
  133 0.5500030
  133 0.5500030
  133 0.8002530
  133 0.4888920
  133 0.5652800
  133 .....449  0.7945071927794792   Kolakoski Constant
  133 0.8555600
  134 0.5500030
  134 0.9472275
  134 1.0694500
  134 0.8555600
  134 0.2555570
  134 0.3666690
  134 0.5583360
  135 0.9166720
  135 0.5500030
  135 1.0291190
  135 0.8305610
  135 0.3055570
  135 0.4277800
  135 0.4277800
  136 0.5500030
  136 0.8555600
  136 0.3055570
  136 0.3666690
  136 0.3055570
  136 0.5500030
  136 0.5500030
  137 0.5500030
  137 0.5500030
  137 0.5500030
  137 0.5500030
  137 0.5500030
  137 0.5500030
  137 0.5500030
  138 0.5500030
  138 0.5500030
  138 0.3055570
  138 0.3055570
  138 0.3666690
  138 0.8555600
  138 0.5194470
  139 0.5194470
  139 0.7333370
  139 0.7333370
  139 0.7333370
  139 0.7027820
  139 .....449  0.7945071927794792   Kolakoski Constant
  139 0.6416700
  140 0.6111145
  140 0.7333370
  140 .....449  0.7945071927794792   Kolakoski Constant
  140 0.3305570
  140 0.5194470
  140 0.7638930
  140 0.5805590
  141 0.9777830
  141 .....449  0.7945071927794792   Kolakoski Constant
  141 .....449  0.7945071927794792   Kolakoski Constant
  141 0.7027820
  141 .....449  0.7945071927794792   Kolakoski Constant
  141 0.7027820
  141 0.6111145
  142 0.7333370
  142 0.7638930
  142 0.7333370
  142 1.0388950
  142 0.7333370
  142 0.7333370
  142 0.6722260
  143 0.3430580
  143 0.5583360
  143 0.3430580
  143 0.5500030
  143 0.3055570
  143 0.3055570
  143 0.5250030
  144 0.5611140
  144 0.4888920
  144 0.5611140
  144 0.5111140
  144 0.3361130
  144 0.5500030
  144 0.5611140
  145 0.2555570
  145 0.2861130
  145 0.5305590
  145 0.2555570
  145 0.8666720
  145 0.5611140
  145 0.5500030
  146 0.5611140
  146 0.5611140
  146 0.3722250
  146 0.4216690
  146 0.4041690
  146 0.5611140
  146 0.5000030
  147 0.7444490
  147 0.5000030
  147 0.5000030
  147 0.4763920
  147 0.5500030
  147 1.1000060
  147 0.5500030
  148 0.5500030
  148 0.550003
R-2.13.0/src/library/grDevices/src/devPS.c
  844 .........  6.5536e+4   2^16
  916 0.120
 2613 0.03928
 2613 12.92321
 2614 .......7  0.4124540336401075   Thue-Morse constant
 2614 0.950301   Conversion from sRGB to 1931 CIE XYZ (D65 reference white)
 2615 0.9505
 2615 1.0890
 2733 0.005
 2734 0.005
 3410 0.4900
 3411 0.3333
 3471 255.0
 3472 255.0
 3473 255.0
 3484 255.0
 3485 255.0
 3486 255.0
 4517 100.0
 4586 16.667
 4587 16.667
 4867 1200.0
 4869 1200.0
 4904 0.4900
 4905 0.3333
 5106 0.833
 5163 0.833
 5173 16.667
 5190 0.833
 5218 0.833
 5249 0.833
 5306 16.667
 6151 0.4900
 6152 0.3333
 6291 255.0
 6291 255.0
 6292 255.0
 6294 0.213
 6294 0.715
 6294 0.072
 6296 255.0
 6296 255.0
 6297 255.0
 6308 255.0
 6309 255.0
 6310 255.0
 6330 255.0
 6330 255.0
 6331 255.0
 6332 0.213
 6332 0.715
 6332 0.072
 6334 255.0
 6334 255.0
 6335 255.0
 6346 255.0
 6347 255.0
 6348 255.0
 6955 255.0
 6961 255.0
 7307 0.722
 7308 0.396
 7308 0.347
 7310 0.722
 7311 0.396
 7312 0.347
R-2.13.0/src/library/grDevices/src/devQuartz.c
  407 0.4900
  408 0.3333
  724 255.0
  725 255.0
  726 255.0
  727 255.0
  734 255.0
  735 255.0
  736 255.0
  737 255.0
 1040 180.0
R-2.13.0/src/library/grDevices/src/devWindows.c
   93 255.0
   94 255.0
   95 255.0
R-2.13.0/src/library/grid/src/gpar.c
  193 255.0
R-2.13.0/src/library/grid/src/grid.h
  168 ........  7.227e+1   Points (Anglo-American) in a inch
R-2.13.0/src/library/grid/src/matrix.c
  141 ........  3.14159265358979323846   pi
R-2.13.0/src/library/grid/src/unit.c
  767 ........  7.227e+1   Points (Anglo-American) in a inch
  770 ........  7.227e+1   Points (Anglo-American) in a inch
  776 ........  7.227e+1   Points (Anglo-American) in a inch
  779 ........  7.227e+1   Points (Anglo-American) in a inch
  782 ........  7.227e+1   Points (Anglo-American) in a inch
 1543 ........  7.227e+1   Points (Anglo-American) in a inch
 1546 ........  7.227e+1   Points (Anglo-American) in a inch
 1552 ........  7.227e+1   Points (Anglo-American) in a inch
 1555 ........  7.227e+1   Points (Anglo-American) in a inch
 1558 ........  7.227e+1   Points (Anglo-American) in a inch
R-2.13.0/src/library/stats/src/bandwidths.c
   17 ..........  3.14159265358979323846   pi
R-2.13.0/src/library/stats/src/fexact.c
  157 12345.
  323 12345.
  326 3.45254e-7
  694 ......................  1.83787706640934548356   ln(2*pi)
  699 9876.
  702 9876.
  707 9876.
 2010 ................3  0.91893853320467274178   ln((2pi)^(1/2)) or ln(2pi)/2
 2014 .083333333333333   Log(Gamma function) evaluated using Stirling's approximation (multiple, Abramowitz and Stegun 6.1.41)
 2014 ...............|..  8.33333333333333333333e-2   1/12
R-2.13.0/src/library/stats/src/ksmooth.c
   44 0.3706506
R-2.13.0/src/library/stats/src/loessf.f
   44 0.005e0
  485 .2971620e0
  485 .3802660e0
  485 .4263766e0
  485 .3346498e0
  486 .6271053e0
  486 .5241198e0
  486 .3484836e0
  486 .6687687e0
  486 .6338795e0
  486 .4076457e0
  487 .7207693e0
  487 .1611761e0
  487 .3091323e0
  487 .4401023e0
  487 .2939609e0
  487 .3580278e0
  488 .5555741e0
  488 .3972390e0
  488 .4171278e0
  488 .6293196e0
  488 .4675173e0
  488 .4699070e0
  489 .6674802e0
  489 .2848308e0
  489 .2254512e0
  489 .2914126e0
  489 .5393624e0
  489 .2517230e0
  490 .3898970e0
  490 .7603231e0
  490 .2969113e0
  490 .4740130e0
  490 .9664956e0
  490 .3629838e0
  491 .5348889e0
  491 .2075670e0
  491 .2822574e0
  491 .2369957e0
  491 .3911566e0
  491 .2981154e0
  492 .3623232e0
  492 .5508869e0
  492 .4371032e0
  492 .7002667e0
  492 .4291632e0
  493 .4930370e0
  631 0.3705e0
  635 0.2017e0
  639 0.5591e0
  643 0.1204e0
  647 0.2815e0
  651 0.4536e0
  655 0.7132e0
  680 0.8751e0
  689 9.0572e-2
  691 4.4844e0
  692 1.0856e-2
  693 1.005e0
  694 0.7736e0
  695 5.3718e-2
  696 0.3705e0
  697 0.3495e0
  698 2.6152e-2
  699 0.2017e0
  700 0.7286e0
  701 5.8387e-2
  702 0.5591e0
  703 0.1611e0
  704 9.5807e-2
  705 0.1204e0
  706 0.7978e0
  707 3.1926e-2
  708 0.2815e0
  709 0.4457e0
  710 6.4170e-2
  711 0.4536e0
  712 3.2813e-2
  713 2.0636e-2
  714 0.7132e0
  715 0.3350e0
  716 4.0172e-2
  717 0.8751e0
  718 4.1032e-2
  795 0.08125e0
  869 1.001e0
 1705 0.999e0
R-2.13.0/src/library/stats/src/lowess.c
   59 0.999
  264 0.999
R-2.13.0/src/library/stats/src/nscor.c
   71 177.1
   79 ...........  0.91893853320467274178   ln((2pi)^(1/2)) or ln(2pi)/2
  140 .419885
  140 .450536
  140 .456936
  140 .468488
  141 .112063
  141 .12177
  141 .239299
  141 .215159
  142 .080122
  142 .111348
  142 .211867
  142 .115049
  143 .474798
  143 .469051
  143 .208597
  143 .259784
  144 .282765
  144 .304856
  144 .407708
  144 .414093
  145 .283833
  146 .106136
  147 ........6  0.564189583547756286948   1/(pi^(1/2))
  211 6195.
  211 9569.
  211 6728.
  211 17614.
  211 8278.
  211 3570.
  211 1075.
  212 93380.
  212 175160.
  212 410400.
  212 2157600.
  212 2.376e6
  213 2.065e6
  213 2.065e6
R-2.13.0/src/library/stats/src/portsrc.f
 2483 9973.e+0
 2883 9973.e+0
 9490 0.002e+0
10629 0.002e+0
12375 Suspicious partial need match (5 out of 11): Calculate threshold of hearing (Bouvigne), in db
R-2.13.0/src/library/stats/src/ppr.f
 1198 .000244
R-2.13.0/src/library/stats/src/prho.c
   65 4.6e-4   Spearman's rho using edgeworth-series
R-2.13.0/src/library/stats/src/sbart.c
   99 .......................  0.381966011250105151795   Fraction of circle occupied by Golden angle
  218 .000244
  218 5.954
R-2.13.0/src/library/stats/src/sgram.f
   58 0.3330e0
   64 0.3330e0
   71 0.3330e0
   78 0.3330e0
   87 0.3330e0
   93 0.3330e0
  100 0.3330e0
  109 0.3330e0
  115 0.3330e0
  124 0.3330e0
R-2.13.0/src/library/stats/src/stl.f
  155 0.999e0
  290 0.999e0
R-2.13.0/src/library/stats/src/swilk.c
   34 2.273
   44 .00635   Shapiro-Wilk parametric hypothesis test of composite normality
   87 ..........  0.707106781186547524401   2^(-1/2)
   87 .70710678   sin(pi/2^2)/cos(pi/2^2)
  192 1.90985931710274
  193 .....1975511966  1.04729412282062671789   2^(1/15)
  193 ..............6  1.04719755119659774615   pi/3
  222 1.2816
  223 ......  1.644934066848226   Zeta(2)
  224 2.3263
  225 1.7509
  226 .56268
  227 .8378
R-2.13.0/src/library/tools/src/md5.c
    2 1992.
  231 ........  1.321e+3   Jupiter volume relative to Earth
  291 ..............  4.294967296e+9   2^32
R-2.13.0/src/main/acosh.c
   49 1.18801130533544501356e2
   50 3.94726656571334401102e3
   51 3.43989375926195455866e4
   52 1.08102874834699867335e5
   53 1.10855947270161294369e5
   57 1.86145380837903397292e2
   58 4.15352677227719831579e3
   59 2.97683430363289370382e4
   60 8.29725251988426222434e4
   61 7.83869920495893927727e4
   64 ......................  1.44269504088896340736   1/ln(2) or log2(e)
R-2.13.0/src/main/asinh.c
   48 4.33231683752342103572e-3
   49 5.91750212056387121207e-1
   50 4.37390226194356683570e0
   51 9.09030533308377316566e0
   52 5.56682227230859640450e0
   56 1.28757002067426453537e1
   57 4.86042483805291788324e1
   58 6.95722521337257608734e1
   59 3.34009336338516356383e1
   62 ......................  1.44269504088896340736   1/ln(2) or log2(e)
R-2.13.0/src/main/atanh.c
   49 8.54074331929669305196e-1
   50 1.20426861384072379242e1
   51 4.61252884198732692637e1
   52 6.54566728676544377376e1
   53 3.09092539379866942570e1
   57 1.95638849376911654834e1
   58 1.08938092147140262656e2
   59 2.49839401325893582852e2
   60 2.52006675691344555838e2
   61 9.27277618139601130017e1
R-2.13.0/src/main/colors.c
  143 95.047
  144 100.000
  145 108.883
  146 0.1978398
  147 0.4683363
  155 0.00304
  190 7.999592
  201 1.057311   CIE XYZ to Recommendation BT.709 RGB
R-2.13.0/src/main/connections.c
 5195 1.001
 5455 1.001
R-2.13.0/src/main/datetime.c
  250 .......  8.64e+4   Seconds in a solar day (actual)
  379 ..........7e+9  2.147483648e+9   2^31
  379 ..........7e+9  2.147483648e+9   2^31
  392 .......  8.64e+4   Seconds in a solar day (actual)
  393 .......  8.64e+4   Seconds in a solar day (actual)
R-2.13.0/src/main/engine.c
 1938 0.88622692545275801364
 1939 1.25331413731550025119
 1940 1.55512030155621416073
 1941 1.34677368708859836060
 1942 0.77756015077810708036
 1991 0.005
 1992 0.005
R-2.13.0/src/main/gram.c
  508 ........  4.096e+3   2^12
R-2.13.0/src/main/gramLatex.c
  388 ........  4.096e+3   2^12
R-2.13.0/src/main/gramRd.c
  456 ........  4.096e+3   2^12
R-2.13.0/src/main/graphics.c
 1923 308.25
 3169 0.88622692545275801364
 3170 1.25331413731550025119
 3171 1.55512030155621416073
 3172 1.34677368708859836060
 3173 0.77756015077810708036
R-2.13.0/src/main/memory.c
  745 100.0
  745 100.0
 1980 ........  1.024e+3   2^10
 1980 ........  1.024e+3   2^10
 1980 ........  1.024e+3   2^10
 1986 ........  1.024e+3   2^10
 1986 ........  1.024e+3   2^10
 1986 ........  1.024e+3   2^10
 2359 ........  1.024e+3   2^10
 2362 ........  1.024e+3   2^10
 2362 ........  1.024e+3   2^10
 2365 ........  1.024e+3   2^10
 2365 ........  1.024e+3   2^10
 2366 ........  1.024e+3   2^10
 2369 ........  1.024e+3   2^10
 2568 100.0
 2574 100.0
R-2.13.0/src/main/mkdtemp.c
   92 35.725
   93 3.725
  109 0700.
R-2.13.0/src/main/optim.c
 1084 1.7182818
R-2.13.0/src/main/platform.c
 2433 0200.
R-2.13.0/src/main/plotmath.c
  179 0.015
  185 ......................  0.166666666666666666667   1/6
  193 0.22222222222222222222
  201 0.27777777777777777777
  209 ....................|..  5.55555555555555555556e-2   1/18
  254 ........|..  8.33333333333333333333e-2   1/12
  258 0.1333333
  263 0.344444
  268 ........|..  8.33333333333333333333e-2   1/12
  273 0.825
  283 0.3861111
R-2.13.0/src/main/qsort-body.c
   40 0.21875   Modified quicksort (CACM algorithm # 347)
R-2.13.0/src/main/RNG.c
   78 ..............  4.294967296e+9   2^32
   79 ..........7080797e-10  2.32830643653869628906e-10   2^-32
   80 ...............9e-10  9.31322574615478515625e-10   2^-30
  112 30323.0   Wichmann and Hill (1982) random number generator
  508 1997.
  599 .................3e-10  2.32830643653869628906e-10   2^-32
R-2.13.0/src/main/Rstrptime.h
   10 1996.
R-2.13.0/src/main/saveload.c
  747 1999.
R-2.13.0/src/modules/internet/internet.c
  418 0.499
  418 100.0
  523 0.499
  523 100.0
  603 ........  1.024e+3   2^10
  603 ........  1.024e+3   2^10
  842 ........  1.024e+3   2^10
  842 ........  1.024e+3   2^10
R-2.13.0/src/modules/internet/sock.c
   26 1996.
R-2.13.0/src/modules/lapack/cmplx.f
  252 100.0e0
  254 .....  0.125   2^-3
 9069 2002.
 9073 2002.
 9703 1988.
 9707 1988.
11754 2006.
12269 2002.
12273 2002.
13858 2002.
13862 2002.
14440 2002.
R-2.13.0/src/modules/lapack/dlapack0.f
  875 1988.
  879 1988.
 8605 2006.
 8796 2006.
12354 ......................  6.28318530717958647693   2*pi
12888 100.0e0
20270 100.0e0
20561 0.5630e0
20561 1.010e0
20562 1.050e0
20564 0.3330e0
20566 100.0e0
23798 95.05
23799 1995.
26136 94.04
26137 1994.
26138 1996.
R-2.13.0/src/modules/lapack/dlapack1.f
20999 1997.
21399 1.002
22304 2004.
22307 2004.
22311 1997.
R-2.13.0/src/modules/lapack/dlapack2.f
  586 100.0e0
  588 .....  0.125   2^-3
 6309 2006.
13127 2002.
13131 2002.
19202 100.0e0
R-2.13.0/src/modules/lapack/dlapack3.f
 9486 1986.
14879 1966.
22551 94.04
22552 1994.
22553 1996.
22557 93.23
22561 1996.
23736 94.04
23737 1994.
23738 1996.
23742 93.23
23746 1996.
24227 93.23
24231 1996.
R-2.13.0/src/modules/lapack/dlapack4.f
   92 1988.
   96 1988.
  562 2006.
  562 10.1137
  854 2002.
  858 2002.
 2710 2002.
 2714 2002.
 3316 2002.
 4311 1966.
 4693 0.150102010615740e+00
 4694 0.849897989384260e+00
 4695 0.128208148052635e-15
 4696 0.128257718286320e-15
 4699 0.357171383266986e+00
 4700 0.180411241501588e-15
 4701 0.175152352710251e-15
 5263 1966.
 5445 0.999e0
 5615 100.0e0
 5904 0.5630e0
 5904 1.010e0
 5905 1.050e0
 5907 0.3330e0
 5909 100.0e0
 6219 2004.
 6222 2004.
 6226 1997.
R-2.13.0/src/modules/vfonts/g_alab_her.c
   54 0.725
  126 ......................  3.14159265358979323846   pi
  135 180.0
  350 180.0
R-2.13.0/src/modules/vfonts/g_control.h
   28 0.515
R-2.13.0/src/modules/vfonts/g_her_metr.h
   15 1.175
  106 ........  7.227e+1   Points (Anglo-American) in a inch
  109 ........  7.227e+1   Points (Anglo-American) in a inch
R-2.13.0/src/modules/X11/cairoX11.c
  102 255.0
  103 255.0
  104 255.0
  114 255.0
R-2.13.0/src/modules/X11/dataentry.c
 1882 123456789.0
R-2.13.0/src/modules/X11/devX11.c
  224 0.114   NTSC luminance of RGB color signal
  224 0.114   Luminance calculation according to SMPTE 170M
  224 0.114   Luminance calculation according to ITU-R Rec. 624-4 System B, G
  240 0.114   NTSC luminance of RGB color signal
  240 0.114   Luminance calculation according to SMPTE 170M
  240 0.114   Luminance calculation according to ITU-R Rec. 624-4 System B, G
  419 255.0
  420 255.0
  421 255.0
  460 255.0
  461 255.0
  462 255.0
 2614 0.4900
 2615 0.3333
 3273 0.4900
 3274 0.3333
 3508 Suspicious partial need match (5 out of 9): Convert between RGB and YCC color space
R-2.13.0/src/modules/X11/rbitmap.c
  212 255.0
  213 255.0
  214 255.0
  232 .......  2.54e-2   meters in an inch
  232 .......  2.54e-2   meters in an inch
  266 255.0
  267 255.0
  268 255.0
  647 .......  2.54e-2   meters in an inch
R-2.13.0/src/modules/X11/rotated.c
   85 ....................|..  1.74532925199432957692e-2   Radians in a degree
  406 1000.0
  406 1000.0
  407 1000.0
  407 1000.0
  914 1000.0
  914 1000.0
  915 1000.0
  915 1000.0
 1438 1000.0
 1438 1000.0
 1439 1000.0
 1439 1000.0
 1637 1000.0
 1637 1000.0
 1638 1000.0
 1638 1000.0
 2100 1000.0
 2100 1000.0
 2101 1000.0
 2101 1000.0
 2376 1000.0
 2376 1000.0
 2377 1000.0
 2377 1000.0
R-2.13.0/src/nmath/bd0.c
    4 2000.
R-2.13.0/src/nmath/bessel.h
   63 .2009
  111 85.337
  112 705.342
  113 5674.858
  115 672.788
  116 177.852
  119 706.728
  133 705.342
  136 ........|....  1.491668146240041348e-154   DBL_MIN^(1/2) 32/64 bit representation
  140 2.14946906753213e-08
  141 2.14911933289084e-08
  143 2.149e-8
R-2.13.0/src/nmath/bessel_i.c
  227 1.585
R-2.13.0/src/nmath/bessel_j.c
  208 .......................  0.636619772367581343076   2/pi
  209 6.28125
  210 .001935307179586476925286767
  215 ........  4.032e+4   8!
  216 .........  3.6288e+5   9!
  216 .........  3.6288e+6   10!
  216 ..........  3.99168e+7   11!
  216 479001600.   cosh calculated using Taylors series
  216 479001600.   cos calculated using Taylors series
  216 ...........  4.790016e+8   12!
  216 6227020800.   sin calculated using Taylors series
  216 6227020800.   e^x calculated using Taylors series (divide)
  216 ............  6.2270208e+9   13!
  216 ..............  8.71782912e+10   14!
  217 ...............  1.307674368e+12   15!
  217 ................  2.0922789888e+13   16!
  217 3.55687428096e14   sinh calculated using Taylors series
  217 .................  3.55687428096e+14   17!
  217 ..................  6.402373705728e+15   18!
  218 ....................  1.21645100408832e+17   19!
  218 ....................  2.43290200817664e+18   20!
  218 .....................  5.109094217170944e+19   21!
  219 .......................  1.12400072777760768e+21   22!
  219 ........................  2.585201673888497664e+22   23!
  220 .........................  6.2044840173323943936e+23   24!
  338 .....  0.125   2^-3
R-2.13.0/src/nmath/bessel_k.c
  211 .11593151565841244881
  217 .805629875690432845
  217 20.4045500205365151
  218 157.705605106676174
  218 536.671116469207504
  218 900.382759291288778
  219 730.923886650660393
  219 229.299301509425145
  219 .822467033424113231
  220 29.4601986247850434
  221 1206.70325591027438
  221 2762.91444159791519
  221 3443.74050506564618
  222 2210.63190113378647
  222 572.267338359892221
  224 .48672575865218401848
  224 13.079485869097804016
  225 101.96490580880537526
  225 347.65409106507813131
  226 3.495898124521934782e-4
  227 25.579105509976461286
  227 212.57260432226544008
  228 610.69018684944109624
  228 422.69668805777760407
  230 1.6125990452916363814e-10
  231 2.5051878502858255354e-8
  231 2.7557319615147964774e-6
  233 ...................446  0.166666666666666666667   1/6
  235 52.0583
  235 5.7607
  235 2.7782
  235 14.4303
  235 185.3004
  235 9.3715
  236 41.8341
  236 7.1075
  236 6.4306
  236 42.511
  236 1.35633
  236 84.5096
R-2.13.0/src/nmath/bessel_y.c
  217 15.707963267948966192
  218 .70796326794896619231
  224 6.7735241822398840964e-24
  225 6.1455180116049879894e-23
  225 2.9017595056104745456e-21
  226 1.3639417919073099464e-19
  226 2.3826220476859635824e-18
  227 9.0642907957550702534e-18
  227 1.4943667065169001769e-15
  228 3.3919078305362211264e-14
  228 1.7023776642512729175e-13
  229 9.1609750938768647911e-12
  229 2.4230957900482704055e-10
  230 1.7451364971382984243e-9
  230 3.3126119768180852711e-8
  231 8.6592079961391259661e-7
  231 4.9717367041957398581e-6
  232 7.6309597585908126618e-5
  232 .0012719271366545622927
  233 .0017063050710955562222
  233 .07685284084478667369
  234 .28387654227602353814
  234 .92187029365045265648
R-2.13.0/src/nmath/beta.c
   55 170.5674972726612
   56 171.61447887182298
   57 708.39641853226412
R-2.13.0/src/nmath/d1mach.c
   39 ........|...  1.11022302462515654042e-16   2^-53
R-2.13.0/src/nmath/dbeta.c
    4 2000.
R-2.13.0/src/nmath/dbinom.c
    4 2000.
R-2.13.0/src/nmath/df.c
    4 2000.
R-2.13.0/src/nmath/dgamma.c
    4 2000.
R-2.13.0/src/nmath/dgeom.c
    4 2000.
R-2.13.0/src/nmath/dhyper.c
    4 2000.
R-2.13.0/src/nmath/dnbinom.c
    4 2001.
R-2.13.0/src/nmath/dnchisq.c
   69 1000.
R-2.13.0/src/nmath/dnf.c
    4 2006.
R-2.13.0/src/nmath/dnt.c
    4 2003.
R-2.13.0/src/nmath/dpois.c
    4 2000.
R-2.13.0/src/nmath/dt.c
    4 2000.
R-2.13.0/src/nmath/expm1.c
   52 0.697
R-2.13.0/src/nmath/fprec.c
   53 .2000
R-2.13.0/src/nmath/gamma.c
   48 .8571195590989331421920062399942e-2
   49 .4415381324841006757191315771652e-2
   50 .5685043681599363378632664588789e-1
   51 .4219835396418560501012500186624e-2
   52 .1326808181212460220584006796352e-2
   53 .1893024529798880432523947023886e-3
   54 .3606925327441245256578082217225e-4
   55 .6056761904460864218485548290365e-5
   56 .1055829546302283344731823509093e-5
   57 .1811967365542384048291855891166e-6
   58 .3117724964715322277790254593169e-7
   59 .5354219639019687140874081024347e-8
   60 .9193275519859588946887786825940e-9
   61 .1577941280288339761767423273953e-9
   62 .2707980622934954543266540433089e-10
   63 .4646818653825730144081661058933e-11
   64 .7973350192007419656460767175359e-12
   65 .1368078209830916025799499172309e-12
   66 .2347319486563800657233471771688e-13
   67 .4027432614949066932766570534699e-14
   68 .6910051747372100912138336975257e-15
   69 .1185584500221992907052387126192e-15
   70 .2034148542496373955201026051932e-16
   71 .3490054341717405849274012949108e-17
   72 .5987993856485305567135051066026e-18
   73 .1027378057872228074490069778431e-18
   74 .1762702816060529824942759660748e-19
   75 .3024320653735306260958772112042e-20
   76 .5188914660218397839717833550506e-21
   77 .8902770842456576692449251601066e-22
   78 .1527474068493342602274596891306e-22
   79 .2620731256187362900257328332799e-23
   80 .4496464047830538670331046570666e-24
   81 .7714712731336877911703901525333e-25
   82 .1323635453126044036486572714666e-25
   83 .2270999412942928816702313813333e-26
   84 .3896418998003991449320816639999e-27
   85 .6685198115125953327792127999999e-28
   86 .1146998663140024384347613866666e-28
   87 .1967938586345134677295103999999e-29
   88 .3376448816585338090334890666666e-30
   89 .5793070335782135784625493333333e-31
  116 170.5674972726612
  117 171.61447887182298
  118 2.2474362225598545e-308
  119 ..................96e-8  1.490116119384765625e-8   2^-26
  119 ..................96e-8  1.490116119384765624e-8   DBL_EPSILON^(1/2) 32/64 bit representation
R-2.13.0/src/nmath/gamma_cody.c
   40 1976.
   42 1968.
   55 ......................  0.91893853320467274178   ln((2pi)^(1/2)) or ln(2pi)/2
   76 966.961
   78 177.803
   80 35.040
   82 171.624
   83 57.574
   84 34.844
   85 171.489
  108 171.624
  118 1.71618513886549492533811
  119 24.7656508055759199108314
  119 379.804256470945635097577
  120 629.331155312818442661052
  120 866.966202790413211295064
  121 31451.2729688483675254357
  121 36144.4134186911729807069
  122 66456.1438202405440627855
  124 30.8402300119738975254353
  125 315.350626979604161529144
  125 1015.15636749021914166146
  126 3107.77167157231109440444
  126 22538.1184209801510330112
  127 4755.84627752788110767815
  127 134659.959864969306392456
  128 115132.259675553483497211
  135 ...................155e-2  8.33333333333333333333e-2   1/12
R-2.13.0/src/nmath/gammalims.c
   45 170.5674972726612
   46 171.61447887182298
   56 .2258
   76 .9189
R-2.13.0/src/nmath/lgamma.c
   61 2.5327372760800758e+305
   62 ..................96e-8  1.490116119384765625e-8   2^-26
   62 ..................96e-8  1.490116119384765624e-8   DBL_EPSILON^(1/2) 32/64 bit representation
   95 4934720.
R-2.13.0/src/nmath/lgammacor.c
   49 .1666389480451863247205729650822e+0
   50 .1384948176067563840732986059135e-4
   51 .9810825646924729426157171547487e-8
   52 .1809129475572494194263306266719e-10
   53 .6221098041892605227126015543416e-13
   54 .3399615005417721944303330599666e-15
   55 .2683181998482698748957538846666e-17
   56 .2868042435334643284144622399999e-19
   57 .3962837061046434803679306666666e-21
   58 .6831888753985766870111999999999e-23
   59 .1429227355942498147573333333333e-24
   60 .3547598158101070547199999999999e-26
   61 .1025680058010470912000000000000e-27
   62 .3401102254316748799999999999999e-29
   63 .1276642195630062933333333333333e-30
   72 94906265.62425156
   73 3.745194030963158e306
R-2.13.0/src/nmath/log1p.c
   54 31.20
   55 30.93
   56 32.01
   59 .10378693562743769800686267719098e+1
   60 ......43015049089180988  0.133630620956212192342   56^(-1/2)
   61 .19408249135520563357926199374750e-1
   62 .30107551127535777690376537776592e-2
   63 .48694614797154850090456366509137e-3
   64 .81054881893175356066809943008622e-4
   65 .13778847799559524782938251496059e-4
   66 .23802210894358970251369992914935e-5
   67 .41640416213865183476391859901989e-6
   68 .73595828378075994984266837031998e-7
   69 .13117611876241674949152294345011e-7
   70 .23546709317742425136696092330175e-8
   71 .42522773276034997775638052962567e-9
   72 .77190894134840796826108107493300e-10
   73 .14075746481359069909215356472191e-10
   74 .25769072058024680627537078627584e-11
   75 .47342406666294421849154395005938e-12
   76 .87249012674742641745301263292675e-13
   77 .16124614902740551465739833119115e-13
   78 .29875652015665773006710792416815e-14
   79 .55480701209082887983041321697279e-15
   80 .10324619158271569595141333961932e-15
   81 .19250239203049851177878503244868e-16
   82 .35955073465265150011189707844266e-17
   83 .67264542537876857892194574226773e-18
   84 .12602624168735219252082425637546e-18
   85 .23644884408606210044916158955519e-19
   86 .44419377050807936898878389179733e-20
   87 .83546594464034259016241293994666e-21
   88 .15731559416479562574899253521066e-21
   89 .29653128740247422686154369706666e-22
   90 .55949583481815947292156013226666e-23
   91 .10566354268835681048187284138666e-23
   92 .19972483680670204548314999466666e-24
   93 .37782977818839361421049855999999e-25
   94 .71531586889081740345038165333333e-26
   95 .13552488463674213646502024533333e-26
   96 .25694673048487567430079829333333e-27
   97 .48747756066216949076459519999999e-28
   98 .92542112530849715321132373333333e-29
   99 .17578597841760239233269760000000e-29
  100 .33410026677731010351377066666666e-30
  101 .63533936180236187354180266666666e-31
R-2.13.0/src/nmath/pgamma.c
   61 ..............  4.294967296e+9   2^32
  123 0.79149064
  148 .......................  0.577215664901532860607   Euler-Mascheroni constant
  153 0.3224670334241132182362075833230126e-0
  154 0.6735230105319809513324605383715000e-1
  155 0.2058080842778454787900092413529198e-1
  156 0.7385551028673985266273097291406834e-2
  157 0.2890510330741523285752988298486755e-2
  158 0.1192753911703260977113935692828109e-2
  159 0.5096695247430424223356548135815582e-3
  160 0.2231547584535793797614188036013401e-3
  161 0.9945751278180853371459589003190170e-4
  162 0.4492623673813314170020750240635786e-4
  163 0.2050721277567069155316650397830591e-4
  164 0.9439488275268395903987425104415055e-5
  165 0.4374866789907487804181793223952411e-5
  166 0.2039215753801366236781900709670839e-5
  167 0.9551412130407419832857179772951265e-6
  168 0.4492469198764566043294290331193655e-6
  169 0.2120718480555466586923135901077628e-6
  170 0.1004322482396809960872083050053344e-6
  171 0.4769810169363980565760193417246730e-7
  172 0.2271109460894316491031998116062124e-7
  173 0.1083865921489695409107491757968159e-7
  174 0.5183475041970046655121248647057669e-8
  175 0.2483674543802478317185008663991718e-8
  176 0.1192140140586091207442548202774640e-8
  177 0.5731367241678862013330194857961011e-9
  178 0.2759522885124233145178149692816341e-9
  179 0.1330476437424448948149715720858008e-9
  180 0.6422964563838100022082448087644648e-10
  181 0.3104424774732227276239215783404066e-10
  182 0.1502138408075414217093301048780668e-10
  183 0.7275974480239079662504549924814047e-11
  184 0.3527742476575915083615072228655483e-11
  185 0.1711991790559617908601084114443031e-11
  186 0.8315385841420284819798357793954418e-12
  187 0.4042200525289440065536008957032895e-12
  188 0.1966475631096616490411045679010286e-12
  189 0.9573630387838555763782200936508615e-13
  190 0.4664076026428374224576492565974577e-13
  191 0.2273736960065972320633279596737272e-13
  192 0.1109139947083452201658320007192334e-13
  195 0.2273736845824652515226821577978691e-12
  463 121.1
  533 2835.
  534 8505.
  535 12629925.
  536 492567075.
  537 1477701225.
  546 209018880.
  547 75246796800.
  548 902961561600.
  747 1988.
R-2.13.0/src/nmath/phyper.c
   35 6.372680161e-14
   36 5.111204798e-22
R-2.13.0/src/nmath/pnchisq.c
  126 .....  0.125   2^-3
R-2.13.0/src/nmath/pnorm.c
   52 .2000
  108 45507.789335026729956   fabs(x) < 0.66291  Cumulative distribution function for Normal/Gaussian distribution using a rational function approximation
  111 .......151208813466764  0.39894228040143267794   1/(2*pi)^(1/2)
  129 19685.429676859990727   0.66291 < fabs(x) < sqrt(32) Cumulative distribution function for Normal/Gaussian distribution using a rational function approximation
  142 ......1378689285515e-2  6.598803584531253e-2   e^(-e)
  144 7.29751555083966205e-5   sqrt(32) < fabs(x) Cumulative distribution function for Normal/Gaussian distribution using a rational function approximation
  223 37.5193
  223 8.2924
  245 37.5193
  245 8.2924
  246 8.2924
  246 37.5193
R-2.13.0/src/nmath/pnt.c
  157 14.10
R-2.13.0/src/nmath/polygamma.c
  132 1964.
  154 ...................7  0.166666666666666666667   1/6
  155 3.33333333333333333e-02
  156 ...................|..  2.38095238095238095238e-2   1/42
  157 3.33333333333333333e-02
  158 7.57575757575757576e-02
  159 2.53113553113553114e-01
  160 1.16666666666666667e+00
  161 7.09215686274509804e+00
  162 5.49711779448621554e+01
  163 5.29124242424242424e+02
  164 6.19212318840579710e+03
  165 8.65802531135531136e+04
  166 1.42551716666666667e+06
  167 2.72982310678160920e+07
  168 6.01580873900642368e+08
  169 1.51163157670921569e+10
  170 4.29614643061166667e+11
  171 1.37116552050883328e+13
  172 4.88332318973593167e+14
  173 1.92965793419400681e+16
  260 2.302
  290 18.06
  293 0.0006038
  293 0.008677
  298 2.302
R-2.13.0/src/nmath/ptukey.c
   39 1988.
   90 0.981560634246719250690549090149
   91 0.904117256370474856678465866119
   92 0.769902674194304687036893833213
   93 0.587317954286617447296702418941
   94 0.367831498998180193752691536644
   95 0.125233408511468915472441369464
   98 0.047175336386511827194615961485
   99 0.106939325995318430960254718194
  100 0.160078328543346226334652529543
  101 0.203167426723065921749064455810
  102 0.233492536538354808760849898925
  103 0.249147045813402785000562436043
  259 1966.
  279 100.0
  280 800.0
  281 5000.0
  282 25000.0
  286 .....  0.125   2^-3
  288 0.989400934991649932596154173450
  289 0.944575023073232576077988415535
  290 0.865631202387831743880467897712
  291 0.755404408355003033895101194847
  292 0.617876244402643748446671764049
  293 0.458016777657227386342419442984
  294 0.281603550779258913230460501460
  295 0.950125098376374401853193354250e-1
  298 0.271524594117540948517805724560e-1
  299 0.622535239386478928628438369944e-1
  300 0.951585116824927848099251076022e-1
  301 0.124628971255533872052476282192
  302 0.149595988816576732081501730547
  303 0.169156519395002538189312079030
  304 0.182603415044923588866763667969
  305 0.189450610455068496285396723208
R-2.13.0/src/nmath/qbeta.c
   44 2.30753
   45 0.27061
   46 0.99229
   47 0.04481
R-2.13.0/src/nmath/qgamma.c
   33 0.000002
  122 36.043653389117156
R-2.13.0/src/nmath/qnorm.c
   85 .180625
  141 .59983220655588793769   Calculate quantile for standard normal distribution
R-2.13.0/src/nmath/qt.c
  146 96.36
  182 0.089
  182 0.822
R-2.13.0/src/nmath/qtukey.c
   40 1988.
   70 0.204231210125
   74 0.8832
   75 0.2368
   76 1.214
   77 1.208
   78 ......  1.4142135623730950488   2^(1/2)
   98 1988.
  191 Suspicious partial need match (8 out of 9): Inverse of the Normal cdf, quantile function or probit function (Odeh & Evans)
R-2.13.0/src/nmath/rbeta.c
   78 ......9e-2  1.38888889e-2   Inches in a point
   78 ......9e-2  1.38888888888888888889e-2   1/72
   78 ......7e-2  4.16666666666666666667e-2   1/24
  123 2.609438   Generate random value drawn from the Beta distribution
R-2.13.0/src/nmath/rbinom.c
   98 2.195
  102 0.134
  161 ...............  0.166666666666666666667   1/6
  177 13860.0
  177 132.0
  177 166320.0
  177 13860.0
  177 132.0
  177 166320.0
  177 13860.0
  177 132.0
  177 166320.0
  177 13860.0
  177 132.0
  177 166320.
R-2.13.0/src/nmath/rgamma.c
   57 ........  5.65685424949238019521   32^(1/2) or 2^(5/2)
   58 ......................  0.367879441171442321596   1/e
   64 .......9e-2  4.16666666666666666667e-2   1/24
   65 .....148e-2  2.08333333333333333333e-2   1/48
   66 0.00801191
   67 0.00144121
   68 7.388e-5
   69 2.4511e-4
   70 2.424e-4
   72 .........  0.333333333333333333333   9^(-1/2)
   75 0.1662921
   76 0.1423657
   77 0.1367177
  148 3.686
  149 0.463
  149 0.178
  150 1.235
  151 0.195
  151 0.079
  152 13.022
  153 1.654
  153 0.0076
  154 0.275
  155 0.024
  159 0.1515
  191 0.71874483771719
R-2.13.0/src/nmath/rhyper.c
   57 .......................  0.693147180559945309417   ln(2)
   58 ......................  1.79175946922805500081   ln(3!)
   59 ......................  3.17805383034794561965   ln(4!)
   60 ......................  4.78749174278204599425   ln(5!)
   61 ......................  6.57925121201010099506   ln(6!)
   62 ......................  8.52516136106541430017   ln(7!)
   75 ..............|..  8.33333333333333333333e-2   1/12
   76 ............  0.91893853320467274178   ln((2pi)^(1/2)) or ln(2pi)/2
   76 0.9189385332   ln(x!) using Sterling's approximation
   83 57.56462733
   84 0.0078
   85 0.0034
R-2.13.0/src/nmath/rpois.c
   40 .........  0.333333333333333333333   9^(-1/2)
   46 0.1250060   Derive Poisson deviates from Normal distribution (error < 2e-8)
   46 .....006  0.125   2^-3
   48 .....................  0.142857142857142857143   1/7
   49 ...................|..  8.33333333333333333333e-2   1/12
   50 ..................7e-2  4.16666666666666666667e-2   1/24
   59 ........  4.032e+4   8!
   59 .........  3.6288e+5   9!
   96 1.1484
  119 0.458
  119 0.45792971447
  121 0.458
  181 0.1069
  197 0.6744
  200 0.6744
  244 Suspicious partial need match (7 out of 11): e^x calculated using Taylors series (divide)
  244 Suspicious partial need match (5 out of 8): Derive Poisson deviates from Normal distribution (error < 2e-9)
R-2.13.0/src/nmath/sexp.c
   46 ..................  0.693147180559945309417   ln(2)
   47 0.9333736875190459
   48 0.9888777961838675
   49 0.9984959252914960
   50 0.9998292811061389
   51 0.9999833164100727
   52 0.9999985691438767
   53 0.9999998906925558
R-2.13.0/src/nmath/standalone/sunif.c
   40 ..........7080797e-10  2.32830643653869628906e-10   2^-32
R-2.13.0/src/nmath/stirlerr.c
    4 2000.
   49 .....................|..  8.33333333333333333333e-2   1/12
   52 0.000595238095238095238095238   Log(Gamma function) evaluated using Stirling's approximation (multiple, Abramowitz and Stegun 6.1.41)
   53 0.0008417508417508417508417508
   60 0.1534264097200273452913848
   61 0.0810614667953272582196702
   62 0.0548141210519176538961390
   63 0.0413406959554092940938221
   64 0.03316287351993628748511048
   65 0.02767792568499833914878929
   66 0.02374616365629749597132920
   67 0.02079067210376509311152277
   68 0.01848845053267318523077934
   69 0.01664469118982119216319487
   70 0.01513497322191737887351255
   71 0.01387612882307074799874573
   72 0.01281046524292022692424986
   73 0.01189670994589177009505572
   74 0.01110455975820691732662991
   75 0.010411265261972096497478567
   76 0.009799416126158803298389475
   77 0.009255462182712732917728637
   78 0.008768700134139385462952823
   79 0.008330563433362871256469318
   80 0.007934114564314020547248100
   81 0.007573675487951840794972024
   82 0.007244554301320383179543912
   83 0.006942840107209529865664152
   84 0.006665247032707682442354394
   85 0.006408994188004207068439631
   86 0.006171712263039457647532867
   87 0.005951370112758847735624416
   88 0.005746216513010115682023589
   89 0.005554733551962801371038690
R-2.13.0/src/nmath/toms708.c
  268 100.0
  271 100.0
  285 100.0
  464 ................3  0.577215664901532860607   Euler-Mascheroni constant
  772 ................3  0.39894228040143267794   1/(2*pi)^(1/2)
  912 ................3  0.39894228040143267794   1/(2*pi)^(1/2)
 1209 0.13394
 1294 ................  1.1283791670955125739   2/(pi^(1/2))
 1295 ................4  0.3535533905932737622   8^(-1/2) or 2^(-3/2)
 1296 0.120782237635245
 1331 ..................3  0.666666666666666666667   32/(32+16)
 1402 709.7827
 1406 708.3964
 1411 ...............5  0.693147180559945309417   ln(2)
 1452 9.14041914819518e-10
 1453 .....82361044469e-2  2.38095238095238095238e-2   1/42
 1454 .499999999085958
 1455 .107141568980644
 1456 ......1179760821e-2  1.19047619047619047619e-2   1/84
 1457 5.95130811860248e-4
 1484 .0845104217945565   Compute ln(1 + x)
 1505 .0566749439387324
 1506 .0456512608815524
 1507 .................  0.333333333333333333333   9^(-1/2)
 1508 .224696413112536
 1509 .00620886815375787
 1510 1.27408923933623
 1511 .354508718369557
 1551 .................  0.564189583547756286948   1/(pi^(1/2))
 1552 7.7105849500132e-5
 1552 .00133733772997339
 1553 .0323076579225834
 1553 .0479137145607681
 1553 .128379167095513
 1554 .00301048631703895
 1554 .0538971687740286
 1555 .375795757275549
 1556 ......95517478974  0.564189583547756286948   1/(pi^(1/2))
 1557 .....75825088309  7.21110255092797858624   52^(1/2)
 1561 790.950925327898   Normal cumulative distribution function (0.46875 < x <= 4.0)
 1562 2.10144126479064
 1562 26.2370141675169
 1563 21.3688200555087
 1563 4.6580782871847
 1564 94.153775055546
 1564 187.11481179959
 1565 99.0191814623914
 1565 18.0124575948747
 1625 .................  0.564189583547756286948   1/(pi^(1/2))
 1626 7.7105849500132e-5
 1626 .00133733772997339
 1627 .0323076579225834
 1627 .0479137145607681
 1627 .128379167095513
 1628 .00301048631703895
 1628 .0538971687740286
 1629 .375795757275549
 1630 ......95517478974  0.564189583547756286948   1/(pi^(1/2))
 1631 .....75825088309  7.21110255092797858624   52^(1/2)
 1635 790.950925327898   Normal cumulative distribution function (0.46875 < x <= 4.0)
 1636 2.10144126479064
 1636 26.2370141675169
 1637 21.3688200555087
 1637 4.6580782871847
 1638 94.153775055546
 1638 187.11481179959
 1639 99.0191814623914
 1639 18.0124575948747
 1684 100.0
 1751 .422784335098468
 1751 .771330383816272
 1752 .244757765222226
 1752 .118378989872749
 1752 9.30357293360349e-4
 1753 .0118290993445146
 1753 .00223047661158249
 1753 2.66505979058923e-4
 1754 1.32674909766242e-4
 1755 Suspicious partial need match (5 out of 11): Calculate threshold of hearing (Bouvigne), in db
 1755 .273076135303957
 1756 .0559398236957378
 1772 ................3  0.577215664901532860607   Euler-Mascheroni constant
 1772 .409078193005776
 1773 .230975380857675
 1773 .0597275330452234
 1773 .0076696818164949
 1774 .00514889771323592
 1774 5.89597428611429e-4
 1775 .427569613095214
 1775 .158451672430138
 1776 .0261132021441447
 1776 .00423244297896961
 1797 ................3  0.577215664901532860607   Euler-Mascheroni constant
 1798 .844203922187225
 1799 .168860593646662
 1800 ......27615533591  0.780487804878048780488   32/(32+9)
 1801 .402055799310489
 1802 .0673562214325671
 1803 .00271935708322958
 1804 2.88743195473681
 1805 3.12755088914843
 1806 1.56875193295039
 1807 .361951990101499
 1808 .0325038868253937
 1809 6.67465618796164e-4
 1815 .422784335098467
 1816 .848044614534529
 1817 .565221050691933
 1818 .156513060486551
 1819 .017050248402265
 1820 4.97958207639485e-4
 1821 1.24313399877507
 1822 .548042109832463
 1823 .10155218743983
 1824 .00713309612391
 1825 1.16165475989616e-4
 1854 .................  0.785398163397448309616   pi/4
 1856 1.461632144968362341262659542325721325
 1861 .0089538502298197
 1861 4.77762828042627
 1862 142.441585084029
 1862 1186.45200713425
 1862 3633.51846806499
 1863 4138.10161269013
 1863 1305.60269827897
 1864 44.8452573429826
 1864 520.752771467162
 1865 2210.0079924783
 1865 3641.27349079381
 1865 1908.310765963
 1866 6.91091682714533e-6
 1874 2.12940445131011
 1874 7.01677227766759
 1875 4.48616543918019
 1875 .648157123766197
 1876 32.2703493791143
 1876 89.2920700481861
 1877 54.6117738103215
 1877 7.77788548522962
 2035 ................3  0.91893853320467274178   ln((2pi)^(1/2)) or ln(2pi)/2
 2160 ................|..  8.33333333333333333333e-2   1/12
 2162 7.9365066682539e-4
 2163 5.9520293135187e-4
 2164 8.37308034031215e-4
 2165 .00165322962780713
 2223 ................|..  8.33333333333333333333e-2   1/12
 2225 7.9365066682539e-4
 2226 5.9520293135187e-4
 2227 8.37308034031215e-4
 2228 .00165322962780713
 2282 .418938533204673
 2284 ................|..  8.33333333333333333333e-2   1/12
 2286 7.9365066682539e-4
 2287 5.9520293135187e-4
 2288 8.37308034031215e-4
 2289 .00165322962780713
R-2.13.0/src/nmath/snorm.c
   67 0.0000000
   82 0.1553497
  110 0.70104740   Random sampling from the normal distribution (extension of Forsythe's method)
  122 ................3  0.39894228040143267794   1/(2*pi)^(1/2)
  123 0.180025191068563
  126 2.216035867166471
  203 0.884070402298758
  205 1.13113163544180
  208 0.973310954173898
  214 0.986655477086949
  218 0.958720824790463
  222 0.630834801921960
  223 0.755591531667601
  225 0.034240503750111
  230 0.911312780288703
  234 0.479727404222441
  234 1.105473661022070
  235 0.872834976671790
  237 0.049264496373128
  246 0.479727404222441
  246 0.595507138015940
  247 0.805577924423817
  275 0.884070402298758
  277 1.131131635444180
  280 0.973310954173898
  286 0.986655477086949
  290 0.958720824790463
  294 0.630834801921960
  295 0.755591531667601
  297 0.034240503750111
  302 0.911312780288703
  306 0.479727404222441
  306 1.105473661022070
  307 0.872834976671790
  309 0.049264496373128
  318 0.479727404222441
  318 0.595507138015940
  320 0.805577924423817
  322 0.053377549506886
Matched summary
     1 value sequence   Random sampling from the normal distribution (extension of Forsythe's method)
     2 value sequence   Normal cumulative distribution function (0.46875 < x <= 4.0)
     1 value sequence   Compute ln(1 + x)
     1 value sequence   Derive Poisson deviates from Normal distribution (error < 2e-8)
     1 value sequence   ln(x!) using Sterling's approximation
     1 value sequence   Generate random value drawn from the Beta distribution
     1 value sequence   Calculate quantile for standard normal distribution
     1 value sequence   sqrt(32) < fabs(x) Cumulative distribution function for Normal/Gaussian distribution using a rational function approximation
     1 value sequence   0.66291 < fabs(x) < sqrt(32) Cumulative distribution function for Normal/Gaussian distribution using a rational function approximation
     1 value sequence   fabs(x) < 0.66291  Cumulative distribution function for Normal/Gaussian distribution using a rational function approximation
     1 value sequence   sinh calculated using Taylors series
     1 value sequence   e^x calculated using Taylors series (divide)
     1 value sequence   sin calculated using Taylors series
     1 value sequence   cos calculated using Taylors series
     1 value sequence   cosh calculated using Taylors series
     2 value sequence   Luminance calculation according to ITU-R Rec. 624-4 System B, G
     2 value sequence   Luminance calculation according to SMPTE 170M
     2 value sequence   NTSC luminance of RGB color signal
     1 value sequence   Wichmann and Hill (1982) random number generator
     1 value sequence   Modified quicksort (CACM algorithm # 347)
     1 value sequence   CIE XYZ to Recommendation BT.709 RGB
     1 value sequence   Shapiro-Wilk parametric hypothesis test of composite normality
     1 value sequence   Spearman's rho using edgeworth-series
     2 value sequence   Log(Gamma function) evaluated using Stirling's approximation (multiple, Abramowitz and Stegun 6.1.41)
     1 value sequence   Conversion from sRGB to 1931 CIE XYZ (D65 reference white)
     3 value sequence   sin(pi/2^2)/cos(pi/2^2)
     1 value sequence   Gauss-Kronrod quadrature coefficients for 21 points
     1 value sequence   Gauss-Kronrod-Patterson quadrature coefficients for 21 points
     1 value sequence   Gauss-Kronrod-Patterson quadrature coefficients for 10 points (Numerical recipes in C)
     1 value sequence   Gauss-Kronrod quadrature weights for 10 points
     1 value sequence   Gauss-Kronrod quadrature coefficients for 15 points
     1 value sequence   Gauss-Kronrod quadrature weights for 7 points
   3 ................|..   8.33333333333333333333e-2  1/12
   1 .....................|..  8.33333333333333333333e-2  1/12
   1 ...................|..  8.33333333333333333333e-2  1/12
   1 ..............|..     8.33333333333333333333e-2  1/12
   1 ...................155e-2  8.33333333333333333333e-2  1/12
   2 ........|..           8.33333333333333333333e-2  1/12
   1 ...............|..    8.33333333333333333333e-2  1/12
   1 .................     0.785398163397448309616  pi/4
   1 ......27615533591     0.780487804878048780488  32/(32+9)
   2 .....75825088309      7.21110255092797858624  52^(1/2)
   2 ......95517478974     0.564189583547756286948  1/(pi^(1/2))
   2 .................     0.564189583547756286948  1/(pi^(1/2))
   1 ........6             0.564189583547756286948  1/(pi^(1/2))
   1 .................     0.333333333333333333333  9^(-1/2)
   2 .........             0.333333333333333333333  9^(-1/2)
   2 .......4              0.333333333333333333333  9^(-1/2)
   3 .......4              0.333333333333333333333  9^(-1/2)
   1 ......1179760821e-2   1.19047619047619047619e-2  1/84
   1 .....82361044469e-2   2.38095238095238095238e-2  1/42
   1 ...................|..  2.38095238095238095238e-2  1/42
   1 ...............5      0.693147180559945309417  ln(2)
   1 ..................    0.693147180559945309417  ln(2)
   1 .......................  0.693147180559945309417  ln(2)
   1 ..................3   0.666666666666666666667  32/(32+16)
  11 ......7               0.666666666666666666667  32/(32+16)
   6 .......9              0.666666666666666666667  32/(32+16)
   1 ................4     0.3535533905932737622  8^(-1/2) or 2^(-3/2)
   1 ................      1.1283791670955125739  2/(pi^(1/2))
   3 ................3     0.39894228040143267794  1/(2*pi)^(1/2)
   1 .......151208813466764  0.39894228040143267794  1/(2*pi)^(1/2)
   3 ................3     0.577215664901532860607  Euler-Mascheroni constant
   1 .......................  0.577215664901532860607  Euler-Mascheroni constant
   1 ..................7e-2  4.16666666666666666667e-2  1/24
   1 .......9e-2           4.16666666666666666667e-2  1/24
   1 ......7e-2            4.16666666666666666667e-2  1/24
   1 .....................  0.142857142857142857143  1/7
   1 .....006              0.125  2^-3
   7 .....                 0.125  2^-3
   1 ............          0.91893853320467274178  ln((2pi)^(1/2)) or ln(2pi)/2
   1 ......................  0.91893853320467274178  ln((2pi)^(1/2)) or ln(2pi)/2
   1 ...........           0.91893853320467274178  ln((2pi)^(1/2)) or ln(2pi)/2
   2 ................3     0.91893853320467274178  ln((2pi)^(1/2)) or ln(2pi)/2
   1 ......................  8.52516136106541430017  ln(7!)
   1 ......................  6.57925121201010099506  ln(6!)
   1 ......................  4.78749174278204599425  ln(5!)
   1 ......................  3.17805383034794561965  ln(4!)
   1 ......................  1.79175946922805500081  ln(3!)
   1 .....148e-2           2.08333333333333333333e-2  1/48
   1 ......................  0.367879441171442321596  1/e
   1 ........              5.65685424949238019521  32^(1/2) or 2^(5/2)
   1 ...............       0.166666666666666666667  1/6
   1 ...................7  0.166666666666666666667  1/6
   1 ...................446  0.166666666666666666667  1/6
   1 ......................  0.166666666666666666667  1/6
   1 ......9e-2            1.38888888888888888889e-2  1/72
   1 ......9e-2            1.38888889e-2  Inches in a point
   1 ......                1.4142135623730950488  2^(1/2)
   2 .....................  1.4142135623730950488  2^(1/2)
   1 ......1378689285515e-2  6.598803584531253e-2  e^(-e)
   1 ......43015049089180988  0.133630620956212192342  56^(-1/2)
   2 ..................96e-8  1.490116119384765624e-8  DBL_EPSILON^(1/2) 32/64 bit representation
   2 ..................96e-8  1.490116119384765625e-8  2^-26
   1 ........|...          1.11022302462515654042e-16  2^-53
   1 .........................  6.2044840173323943936e+23  24!
   1 ........................  2.585201673888497664e+22  23!
   1 .......................  1.12400072777760768e+21  22!
   1 .....................  5.109094217170944e+19  21!
   1 ....................  2.43290200817664e+18  20!
   1 ....................  1.21645100408832e+17  19!
   1 ..................    6.402373705728e+15  18!
   1 .................     3.55687428096e+14  17!
   1 ................      2.0922789888e+13  16!
   1 ...............       1.307674368e+12  15!
   1 ..............        8.71782912e+10  14!
   1 ............          6.2270208e+9  13!
   1 ...........           4.790016e+8  12!
   1 ..........            3.99168e+7  11!
   1 .........             3.6288e+6  10!
   2 .........             3.6288e+5  9!
   2 ........              4.032e+4  8!
   1 .......................  0.636619772367581343076  2/pi
   1 ........|....         1.491668146240041348e-154  DBL_MIN^(1/2) 32/64 bit representation
   1 ......................  6.28318530717958647693  2*pi
   1 .................3e-10  2.32830643653869628906e-10  2^-32
   2 ..........7080797e-10  2.32830643653869628906e-10  2^-32
   1 ...............9e-10  9.31322574615478515625e-10  2^-30
   1 ..............        4.294967296e+9  2^32
   4 ..............        4.294967296e+9  2^32
   1 ....................|..  5.55555555555555555556e-2  1/18
   2 ..........7e+9        2.147483648e+9  2^31
   3 .......               8.64e+4  Seconds in a solar day (actual)
   2 ......................  1.44269504088896340736  1/ln(2) or log2(e)
   1 ........              1.321e+3  Jupiter volume relative to Earth
   1 ......                1.644934066848226  Zeta(2)
   1 ..............6       1.04719755119659774615  pi/3
   1 .....1975511966       1.04729412282062671789  2^(1/15)
   1 ..........            0.707106781186547524401  2^(-1/2)
   2 .....................4  0.707106781186547524401  2^(-1/2)
   1 .......................  0.381966011250105151795  Fraction of circle occupied by Golden angle
   1 ......................  1.83787706640934548356  ln(2*pi)
   1 ..........            3.14159265358979323846  pi
   1 ........              3.14159265358979323846  pi
   2 ......................  3.14159265358979323846  pi
   1 ............9         3.14159265358979323846  pi
   1 .......7              0.4124540336401075  Thue-Morse constant
   1 .........             6.5536e+4  2^16
  20 .....449              0.7945071927794792  Kolakoski Constant
   2 .....447              0.7945071927794792  Kolakoski Constant
  14 ........              7.227e+1  Points (Anglo-American) in a inch
   2 ....................|..  1.74532925199432957692e-2  Radians in a degree
   1 ........              1.024e+3  2^10
  23 ........              1.024e+3  2^10
   1 ..............        1.073741824e+9  2^30
   3 ...........           1.048576e+6  2^20
   2 ...........           1.048576e+6  2^20
   6 .......               2.54e-2  meters in an inch
   1 ...................5  3.32192809488736234787  1/log(2) or log2(10)
   5 ......3               0.301029995663981195214  log(2)
   2 .....................3  0.301029995663981195214  log(2)
   4 .......               6.25e-2  2^-4
   2 .....................  1.04427378242741384032  2^(1/16)
   2 .....................  1.09050773266525765921  2^(1/8)
   2 .....................  1.18920711500272106672  2^(1/4)
   1 ........5e-8          5.9604644775390625e-8  2^-24
   1 ............          1.6777216e+7  2^24
   6 ........              4.096e+3  2^12
   1 ....713443086881375936e-2  6.66666666666666666667e-2  1/15
   1 ........42335976907279  0.864864864864864864865  32/(32+5)
File information: 0 directories
      3        0      y
      1        0      m
      1        0      3
      4        0      S
      0      240      h
      0       45      f
      2        0      0
      2        0      1
    778        0      R
      0      599      c
      2        0     pl
      1        0     ts
     15        0     gz
      1        0     nw
    169        0     mo
      1        0     zi
      9        0     rc
      5        0     fd
      2        0     sh
      7        0     mk
    194        0     po
      1        0     fw
     13        0     m4
   1337        0     Rd
      2        0     db
     94        0     in
      1        0     ac
      1        0    sub
      1        0    dat
      2        0    Rin
      1        0    dif
      4        0    Rnw
     11        0    tcl
      1        0    rej
      1        0    doc
     13        0    Snw
     18        0    enc
     87        0    afm
      3        0    rda
      6        0    tab
      1        0    bmp
      1        0    rtf
      6        0    iss
      3        0    isl
      1        0    zip
      7        0    txt
      6        0    def
      1        0    ftn
      3        0    sty
      1        0    cls
      1        0    bst
      4        0    bib
     21        0    pot
      2        0    sin
     27        0    gmo
      2        0    sed
      1        0    aux
      1        0    top
      1        0    bot
     21        0    pdf
      6        0    eps
      2        0    tex
     52        0    win
      3        0    css
      5        0    jpg
      2        0    ico
      2        0    csv
      1        0    LIB
      1        0   java
      1        0   unix
     50        0   save
      1        0   dist
      1        0   docs
      1        0   tiff
      1        0   jpeg
      2        0   hide
     10        0   texi
     11        0   html
      2        0   site